Song Tzu-An, Chowdhury Samadrita Roy, Yang Fan, Dutta Joyita
Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA, 01854 USA and co-affiliated with Massachusetts General Hospital, Boston, MA, 02114.
IEEE Trans Comput Imaging. 2020;6:518-528. doi: 10.1109/tci.2020.2964229. Epub 2020 Jan 6.
Positron emission tomography (PET) suffers from severe resolution limitations which reduce its quantitative accuracy. In this paper, we present a super-resolution (SR) imaging technique for PET based on convolutional neural networks (CNNs). To facilitate the resolution recovery process, we incorporate high-resolution (HR) anatomical information based on magnetic resonance (MR) imaging. We introduce the spatial location information of the input image patches as additional CNN inputs to accommodate the spatially-variant nature of the blur kernels in PET. We compared the performance of shallow (3-layer) and very deep (20-layer) CNNs with various combinations of the following inputs: low-resolution (LR) PET, radial locations, axial locations, and HR MR. To validate the CNN architectures, we performed both realistic simulation studies using the BrainWeb digital phantom and clinical studies using neuroimaging datasets. For both simulation and clinical studies, the LR PET images were based on the Siemens HR+ scanner. Two different scenarios were examined in simulation: one where the target HR image is the ground-truth phantom image and another where the target HR image is based on the Siemens HRRT scanner - a high-resolution dedicated brain PET scanner. The latter scenario was also examined using clinical neuroimaging datasets. A number of factors affected relative performance of the different CNN designs examined, including network depth, target image quality, and the resemblance between the target and anatomical images. In general, however, all deep CNNs outperformed classical penalized deconvolution and partial volume correction techniques by large margins both qualitatively (e.g., edge and contrast recovery) and quantitatively (as indicated by three metrics: peak signal-to-noise-ratio, structural similarity index, and contrast-to-noise ratio).
正电子发射断层扫描(PET)存在严重的分辨率限制,这降低了其定量准确性。在本文中,我们提出了一种基于卷积神经网络(CNN)的PET超分辨率(SR)成像技术。为了促进分辨率恢复过程,我们纳入了基于磁共振(MR)成像的高分辨率(HR)解剖信息。我们将输入图像块的空间位置信息作为额外的CNN输入,以适应PET中模糊核的空间变化特性。我们比较了浅(3层)和非常深(20层)的CNN在以下输入的各种组合下的性能:低分辨率(LR)PET、径向位置、轴向位置和HR MR。为了验证CNN架构,我们使用BrainWeb数字体模进行了逼真的模拟研究,并使用神经成像数据集进行了临床研究。对于模拟和临床研究,LR PET图像均基于西门子HR+扫描仪。在模拟中研究了两种不同的情况:一种情况是目标HR图像是真实体模图像,另一种情况是目标HR图像基于西门子HRRT扫描仪——一种高分辨率专用脑PET扫描仪。后一种情况也使用临床神经成像数据集进行了研究。许多因素影响了所研究的不同CNN设计的相对性能,包括网络深度、目标图像质量以及目标图像与解剖图像之间的相似性。然而,总体而言,所有深度CNN在定性(例如边缘和对比度恢复)和定量(由三个指标表示:峰值信噪比、结构相似性指数和对比度噪声比)方面都比经典的惩罚反卷积和部分体积校正技术有大幅优势。