Suppr超能文献

使用卷积神经网络的超分辨率正电子发射断层成像

Super-Resolution PET Imaging Using Convolutional Neural Networks.

作者信息

Song Tzu-An, Chowdhury Samadrita Roy, Yang Fan, Dutta Joyita

机构信息

Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA, 01854 USA and co-affiliated with Massachusetts General Hospital, Boston, MA, 02114.

出版信息

IEEE Trans Comput Imaging. 2020;6:518-528. doi: 10.1109/tci.2020.2964229. Epub 2020 Jan 6.

Abstract

Positron emission tomography (PET) suffers from severe resolution limitations which reduce its quantitative accuracy. In this paper, we present a super-resolution (SR) imaging technique for PET based on convolutional neural networks (CNNs). To facilitate the resolution recovery process, we incorporate high-resolution (HR) anatomical information based on magnetic resonance (MR) imaging. We introduce the spatial location information of the input image patches as additional CNN inputs to accommodate the spatially-variant nature of the blur kernels in PET. We compared the performance of shallow (3-layer) and very deep (20-layer) CNNs with various combinations of the following inputs: low-resolution (LR) PET, radial locations, axial locations, and HR MR. To validate the CNN architectures, we performed both realistic simulation studies using the BrainWeb digital phantom and clinical studies using neuroimaging datasets. For both simulation and clinical studies, the LR PET images were based on the Siemens HR+ scanner. Two different scenarios were examined in simulation: one where the target HR image is the ground-truth phantom image and another where the target HR image is based on the Siemens HRRT scanner - a high-resolution dedicated brain PET scanner. The latter scenario was also examined using clinical neuroimaging datasets. A number of factors affected relative performance of the different CNN designs examined, including network depth, target image quality, and the resemblance between the target and anatomical images. In general, however, all deep CNNs outperformed classical penalized deconvolution and partial volume correction techniques by large margins both qualitatively (e.g., edge and contrast recovery) and quantitatively (as indicated by three metrics: peak signal-to-noise-ratio, structural similarity index, and contrast-to-noise ratio).

摘要

正电子发射断层扫描(PET)存在严重的分辨率限制,这降低了其定量准确性。在本文中,我们提出了一种基于卷积神经网络(CNN)的PET超分辨率(SR)成像技术。为了促进分辨率恢复过程,我们纳入了基于磁共振(MR)成像的高分辨率(HR)解剖信息。我们将输入图像块的空间位置信息作为额外的CNN输入,以适应PET中模糊核的空间变化特性。我们比较了浅(3层)和非常深(20层)的CNN在以下输入的各种组合下的性能:低分辨率(LR)PET、径向位置、轴向位置和HR MR。为了验证CNN架构,我们使用BrainWeb数字体模进行了逼真的模拟研究,并使用神经成像数据集进行了临床研究。对于模拟和临床研究,LR PET图像均基于西门子HR+扫描仪。在模拟中研究了两种不同的情况:一种情况是目标HR图像是真实体模图像,另一种情况是目标HR图像基于西门子HRRT扫描仪——一种高分辨率专用脑PET扫描仪。后一种情况也使用临床神经成像数据集进行了研究。许多因素影响了所研究的不同CNN设计的相对性能,包括网络深度、目标图像质量以及目标图像与解剖图像之间的相似性。然而,总体而言,所有深度CNN在定性(例如边缘和对比度恢复)和定量(由三个指标表示:峰值信噪比、结构相似性指数和对比度噪声比)方面都比经典的惩罚反卷积和部分体积校正技术有大幅优势。

相似文献

1
Super-Resolution PET Imaging Using Convolutional Neural Networks.使用卷积神经网络的超分辨率正电子发射断层成像
IEEE Trans Comput Imaging. 2020;6:518-528. doi: 10.1109/tci.2020.2964229. Epub 2020 Jan 6.
2
PET image super-resolution using generative adversarial networks.基于生成对抗网络的 PET 图像超分辨率技术
Neural Netw. 2020 May;125:83-91. doi: 10.1016/j.neunet.2020.01.029. Epub 2020 Feb 3.
3
5
Micro-Networks for Robust MR-Guided Low Count PET Imaging.用于稳健的磁共振引导低计数正电子发射断层成像的微网络
IEEE Trans Radiat Plasma Med Sci. 2020 Apr 8;5(2):202-212. doi: 10.1109/TRPMS.2020.2986414. eCollection 2021 Mar.
7
Autoencoder-Inspired Convolutional Network-Based Super-Resolution Method in MRI.基于自动编码器启发式卷积网络的 MRI 超分辨率方法。
IEEE J Transl Eng Health Med. 2021 Apr 28;9:1800113. doi: 10.1109/JTEHM.2021.3076152. eCollection 2021.

引用本文的文献

4
Super-resolution techniques for biomedical applications and challenges.用于生物医学应用的超分辨率技术及挑战。
Biomed Eng Lett. 2024 Mar 19;14(3):465-496. doi: 10.1007/s13534-024-00365-4. eCollection 2024 May.

本文引用的文献

1
6
Role of Cardiac PET in Clinical Practice.心脏正电子发射断层显像在临床实践中的作用
Curr Treat Options Cardiovasc Med. 2017 Nov 9;19(12):93. doi: 10.1007/s11936-017-0591-x.
8
PET Reconstruction With an Anatomical MRI Prior Using Parallel Level Sets.基于并行水平集的解剖 MRI 先验的 PET 重建。
IEEE Trans Med Imaging. 2016 Sep;35(9):2189-2199. doi: 10.1109/TMI.2016.2549601. Epub 2016 Apr 14.
9
Clinical application of PET/MRI in oncology.PET/MRI在肿瘤学中的临床应用。
J Magn Reson Imaging. 2016 Aug;44(2):265-76. doi: 10.1002/jmri.25161. Epub 2016 Mar 23.
10
Image Super-Resolution Using Deep Convolutional Networks.基于深度卷积网络的图像超分辨率重建。
IEEE Trans Pattern Anal Mach Intell. 2016 Feb;38(2):295-307. doi: 10.1109/TPAMI.2015.2439281.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验