Suppr超能文献

利用多尺度上下文和类拉东特征检测电子显微镜图像中的神经元膜。

Detection of neuron membranes in electron microscopy images using multi-scale context and radon-like features.

作者信息

Seyedhosseini Mojtaba, Kumar Ritwik, Jurrus Elizabeth, Giuly Rick, Ellisman Mark, Pfister Hanspeter, Tasdizen Tolga

机构信息

Electrical and Computer Engineering Department, University of Utah, USA.

出版信息

Med Image Comput Comput Assist Interv. 2011;14(Pt 1):670-7. doi: 10.1007/978-3-642-23623-5_84.

Abstract

Automated neural circuit reconstruction through electron microscopy (EM) images is a challenging problem. In this paper, we present a novel method that exploits multi-scale contextual information together with Radon-like features (RLF) to learn a series of discriminative models. The main idea is to build a framework which is capable of extracting information about cell membranes from a large contextual area of an EM image in a computationally efficient way. Toward this goal, we extract RLF that can be computed efficiently from the input image and generate a scale-space representation of the context images that are obtained at the output of each discriminative model in the series. Compared to a single-scale model, the use of a multi-scale representation of the context image gives the subsequent classifiers access to a larger contextual area in an effective way. Our strategy is general and independent of the classifier and has the potential to be used in any context based framework. We demonstrate that our method outperforms the state-of-the-art algorithms in detection of neuron membranes in EM images.

摘要

通过电子显微镜(EM)图像进行自动神经回路重建是一个具有挑战性的问题。在本文中,我们提出了一种新颖的方法,该方法利用多尺度上下文信息以及类拉东特征(RLF)来学习一系列判别模型。主要思想是构建一个框架,该框架能够以计算高效的方式从EM图像的大上下文区域中提取有关细胞膜的信息。为了实现这一目标,我们提取了可以从输入图像中高效计算的RLF,并生成在该系列中每个判别模型的输出处获得的上下文图像的尺度空间表示。与单尺度模型相比,上下文图像的多尺度表示的使用使后续分类器能够有效地访问更大的上下文区域。我们的策略是通用的,与分类器无关,并且有可能用于任何基于上下文的框架中。我们证明,在EM图像中检测神经元膜方面,我们的方法优于当前的先进算法。

相似文献

2
Multi-class multi-scale series contextual model for image segmentation.多类多尺度序列上下文模型的图像分割。
IEEE Trans Image Process. 2013 Nov;22(11):4486-96. doi: 10.1109/TIP.2013.2274388. Epub 2013 Jul 23.

引用本文的文献

1
Segmentation of phase contrast microscopy images based on multi-scale local Basic Image Features histograms.基于多尺度局部基本图像特征直方图的相衬显微镜图像分割
Comput Methods Biomech Biomed Eng Imaging Vis. 2017 Sep 3;5(5):359-367. doi: 10.1080/21681163.2015.1016243. Epub 2017 Apr 7.
2
Semantic Image Segmentation with Contextual Hierarchical Models.基于上下文层次模型的语义图像分割
IEEE Trans Pattern Anal Mach Intell. 2016 May;38(5):951-64. doi: 10.1109/TPAMI.2015.2473846. Epub 2015 Aug 27.
9
The Design of SimpleITK.SimpleITK 的设计。
Front Neuroinform. 2013 Dec 30;7:45. doi: 10.3389/fninf.2013.00045. eCollection 2013.

本文引用的文献

1
Uniqueness of the gaussian kernel for scale-space filtering.高斯核在尺度空间滤波中的独特性。
IEEE Trans Pattern Anal Mach Intell. 1986 Jan;8(1):26-33. doi: 10.1109/tpami.1986.4767749.
4
Contour-propagation algorithms for semi-automated reconstruction of neural processes.用于神经突起半自动重建的轮廓传播算法。
J Neurosci Methods. 2008 Jan 30;167(2):349-57. doi: 10.1016/j.jneumeth.2007.07.021. Epub 2007 Aug 10.
5
Towards neural circuit reconstruction with volume electron microscopy techniques.利用体电子显微镜技术实现神经回路重建
Curr Opin Neurobiol. 2006 Oct;16(5):562-70. doi: 10.1016/j.conb.2006.08.010. Epub 2006 Sep 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验