Criminisi Antonio, Juluru Krishna, Pathak Sayan
Microsoft Research Ltd., CB3 0FB, Cambridge, UK.
Med Image Comput Comput Assist Interv. 2011;14(Pt 3):49-57. doi: 10.1007/978-3-642-23626-6_7.
This paper presents an algorithm for the automatic detection of intravenous contrast in CT scans. This is useful e.g. for quality control, given the unreliability of the existing DICOM contrast metadata. The algorithm is based on a hybrid discriminative-generative probabilistic model. A discriminative detector localizes enhancing regions of interest in the scan. Then a generative classifier optimally fuses evidence gathered from those regions into an efficient, probabilistic prediction. The main contribution is in the generative part. It assigns optimal weights to the detected organs based on their learned degree of enhancement under contrast material. The model is robust with respect to missing organs, patients geometry, pathology and settings. Validation is performed on a database of 400 highly variable patients CT scans. Results indicate detection accuracy greater than 91% at approximately 1 second per scan.
本文提出了一种用于在CT扫描中自动检测静脉造影剂的算法。鉴于现有DICOM造影元数据的不可靠性,这在例如质量控制方面很有用。该算法基于一种混合判别式生成概率模型。一个判别式检测器定位扫描中感兴趣的增强区域。然后,一个生成式分类器将从这些区域收集的证据最优地融合成一个高效的概率预测。主要贡献在于生成部分。它根据检测到的器官在造影剂下的增强学习程度为其分配最优权重。该模型对于缺失器官、患者体型、病理和设置具有鲁棒性。在一个包含400例高度可变患者CT扫描的数据库上进行了验证。结果表明,每次扫描约1秒时检测准确率大于91%。