Suppr超能文献

一种用于脑病变分割的生成概率模型及判别式扩展——应用于肿瘤和中风

A Generative Probabilistic Model and Discriminative Extensions for Brain Lesion Segmentation--With Application to Tumor and Stroke.

作者信息

Menze Bjoern H, Van Leemput Koen, Lashkari Danial, Riklin-Raviv Tammy, Geremia Ezequiel, Alberts Esther, Gruber Philipp, Wegener Susanne, Weber Marc-Andre, Szekely Gabor, Ayache Nicholas, Golland Polina

出版信息

IEEE Trans Med Imaging. 2016 Apr;35(4):933-46. doi: 10.1109/TMI.2015.2502596. Epub 2015 Nov 20.

Abstract

We introduce a generative probabilistic model for segmentation of brain lesions in multi-dimensional images that generalizes the EM segmenter, a common approach for modelling brain images using Gaussian mixtures and a probabilistic tissue atlas that employs expectation-maximization (EM), to estimate the label map for a new image. Our model augments the probabilistic atlas of the healthy tissues with a latent atlas of the lesion. We derive an estimation algorithm with closed-form EM update equations. The method extracts a latent atlas prior distribution and the lesion posterior distributions jointly from the image data. It delineates lesion areas individually in each channel, allowing for differences in lesion appearance across modalities, an important feature of many brain tumor imaging sequences. We also propose discriminative model extensions to map the output of the generative model to arbitrary labels with semantic and biological meaning, such as "tumor core" or "fluid-filled structure", but without a one-to-one correspondence to the hypo- or hyper-intense lesion areas identified by the generative model. We test the approach in two image sets: the publicly available BRATS set of glioma patient scans, and multimodal brain images of patients with acute and subacute ischemic stroke. We find the generative model that has been designed for tumor lesions to generalize well to stroke images, and the extended discriminative -discriminative model to be one of the top ranking methods in the BRATS evaluation.

摘要

我们介绍了一种用于分割多维图像中脑病变的生成概率模型,该模型推广了EM分割器,这是一种使用高斯混合和概率组织图谱对脑图像进行建模的常用方法,该图谱采用期望最大化(EM)来估计新图像的标签图。我们的模型用病变的潜在图谱增强了健康组织的概率图谱。我们推导了一种具有闭式EM更新方程的估计算法。该方法从图像数据中联合提取潜在图谱先验分布和病变后验分布。它在每个通道中单独描绘病变区域,考虑到不同模态下病变外观的差异,这是许多脑肿瘤成像序列的一个重要特征。我们还提出了判别模型扩展,将生成模型的输出映射到具有语义和生物学意义的任意标签,如“肿瘤核心”或“液性结构”,但与生成模型识别的低或高信号病变区域没有一一对应关系。我们在两个图像集上测试了该方法:公开可用的胶质瘤患者扫描BRATS集,以及急性和亚急性缺血性中风患者的多模态脑图像。我们发现,为肿瘤病变设计的生成模型能很好地推广到中风图像,并且扩展的判别模型是BRATS评估中排名靠前的方法之一。

相似文献

2
A generative model for brain tumor segmentation in multi-modal images.一种用于多模态图像中脑肿瘤分割的生成模型。
Med Image Comput Comput Assist Interv. 2010;13(Pt 2):151-9. doi: 10.1007/978-3-642-15745-5_19.
4
GLISTR: glioma image segmentation and registration.GLISTR:脑胶质瘤图像分割与配准。
IEEE Trans Med Imaging. 2012 Oct;31(10):1941-54. doi: 10.1109/TMI.2012.2210558. Epub 2012 Aug 13.
6
Extended Modality Propagation: Image Synthesis of Pathological Cases.扩展模态传播:病理案例的图像合成。
IEEE Trans Med Imaging. 2016 Dec;35(12):2598-2608. doi: 10.1109/TMI.2016.2589760. Epub 2016 Jul 9.
10
An Optimal, Generative Model for Estimating Multi-Label Probabilistic Maps.用于估计多标签概率图谱的最优生成模型。
IEEE Trans Med Imaging. 2020 Jul;39(7):2316-2326. doi: 10.1109/TMI.2020.2968917. Epub 2020 Jan 23.

引用本文的文献

1
Magnetic resonance image-based brain tumour segmentation methods: A systematic review.基于磁共振成像的脑肿瘤分割方法:一项系统综述。
Digit Health. 2022 Mar 16;8:20552076221074122. doi: 10.1177/20552076221074122. eCollection 2022 Jan-Dec.
3
Analyzing magnetic resonance imaging data from glioma patients using deep learning.利用深度学习分析脑胶质瘤患者的磁共振成像数据。
Comput Med Imaging Graph. 2021 Mar;88:101828. doi: 10.1016/j.compmedimag.2020.101828. Epub 2020 Dec 2.

本文引用的文献

1
Coupling Statistical Segmentation and PCA Shape Modeling.耦合统计分割与主成分分析形状建模
Med Image Comput Comput Assist Interv. 2004 Sep;3216:151-159. doi: 10.1007/978-3-540-30135-6_19.
2
MONITORING SLOWLY EVOLVING TUMORS.监测缓慢进展的肿瘤。
Proc IEEE Int Symp Biomed Imaging. 2008 May;2008:812-815. doi: 10.1109/ISBI.2008.4541120. Epub 2008 Jun 13.
3
The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS).多模态脑肿瘤图像分割基准(BRATS)。
IEEE Trans Med Imaging. 2015 Oct;34(10):1993-2024. doi: 10.1109/TMI.2014.2377694. Epub 2014 Dec 4.
5
Spatio-temporal video segmentation with shape growth or shrinkage constraint.具有形状增长或收缩约束的时空视频分割。
IEEE Trans Image Process. 2014 Sep;23(9):3829-40. doi: 10.1109/TIP.2014.2336544. Epub 2014 Jul 8.
7
Feature-based alignment of volumetric multi-modal images.基于特征的容积多模态图像对齐
Inf Process Med Imaging. 2013;23:25-36. doi: 10.1007/978-3-642-38868-2_3.
8
Sparse scale-space decomposition of volume changes in deformations fields.变形场中体积变化的稀疏尺度空间分解
Med Image Comput Comput Assist Interv. 2013;16(Pt 2):328-35. doi: 10.1007/978-3-642-40763-5_41.
9
Is synthesizing MRI contrast useful for inter-modality analysis?合成磁共振成像造影剂对多模态分析有用吗?
Med Image Comput Comput Assist Interv. 2013;16(Pt 1):631-8. doi: 10.1007/978-3-642-40811-3_79.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验