Menze Bjoern H, Van Leemput Koen, Lashkari Danial, Riklin-Raviv Tammy, Geremia Ezequiel, Alberts Esther, Gruber Philipp, Wegener Susanne, Weber Marc-Andre, Szekely Gabor, Ayache Nicholas, Golland Polina
IEEE Trans Med Imaging. 2016 Apr;35(4):933-46. doi: 10.1109/TMI.2015.2502596. Epub 2015 Nov 20.
We introduce a generative probabilistic model for segmentation of brain lesions in multi-dimensional images that generalizes the EM segmenter, a common approach for modelling brain images using Gaussian mixtures and a probabilistic tissue atlas that employs expectation-maximization (EM), to estimate the label map for a new image. Our model augments the probabilistic atlas of the healthy tissues with a latent atlas of the lesion. We derive an estimation algorithm with closed-form EM update equations. The method extracts a latent atlas prior distribution and the lesion posterior distributions jointly from the image data. It delineates lesion areas individually in each channel, allowing for differences in lesion appearance across modalities, an important feature of many brain tumor imaging sequences. We also propose discriminative model extensions to map the output of the generative model to arbitrary labels with semantic and biological meaning, such as "tumor core" or "fluid-filled structure", but without a one-to-one correspondence to the hypo- or hyper-intense lesion areas identified by the generative model. We test the approach in two image sets: the publicly available BRATS set of glioma patient scans, and multimodal brain images of patients with acute and subacute ischemic stroke. We find the generative model that has been designed for tumor lesions to generalize well to stroke images, and the extended discriminative -discriminative model to be one of the top ranking methods in the BRATS evaluation.
我们介绍了一种用于分割多维图像中脑病变的生成概率模型,该模型推广了EM分割器,这是一种使用高斯混合和概率组织图谱对脑图像进行建模的常用方法,该图谱采用期望最大化(EM)来估计新图像的标签图。我们的模型用病变的潜在图谱增强了健康组织的概率图谱。我们推导了一种具有闭式EM更新方程的估计算法。该方法从图像数据中联合提取潜在图谱先验分布和病变后验分布。它在每个通道中单独描绘病变区域,考虑到不同模态下病变外观的差异,这是许多脑肿瘤成像序列的一个重要特征。我们还提出了判别模型扩展,将生成模型的输出映射到具有语义和生物学意义的任意标签,如“肿瘤核心”或“液性结构”,但与生成模型识别的低或高信号病变区域没有一一对应关系。我们在两个图像集上测试了该方法:公开可用的胶质瘤患者扫描BRATS集,以及急性和亚急性缺血性中风患者的多模态脑图像。我们发现,为肿瘤病变设计的生成模型能很好地推广到中风图像,并且扩展的判别模型是BRATS评估中排名靠前的方法之一。