Suppr超能文献

基于多实例表示和学习的皮肤活检组织病理图像自动标注。

Automated skin biopsy histopathological image annotation using multi-instance representation and learning.

出版信息

BMC Med Genomics. 2013;6 Suppl 3(Suppl 3):S10. doi: 10.1186/1755-8794-6-S3-S10. Epub 2013 Nov 11.

Abstract

With digitisation and the development of computer-aided diagnosis, histopathological image analysis has attracted considerable interest in recent years. In this article, we address the problem of the automated annotation of skin biopsy images, a special type of histopathological image analysis. In contrast to previous well-studied methods in histopathology, we propose a novel annotation method based on a multi-instance learning framework. The proposed framework first represents each skin biopsy image as a multi-instance sample using a graph cutting method, decomposing the image to a set of visually disjoint regions. Then, we construct two classification models using multi-instance learning algorithms, among which one provides determinate results and the other calculates a posterior probability. We evaluate the proposed annotation framework using a real dataset containing 6691 skin biopsy images, with 15 properties as target annotation terms. The results indicate that the proposed method is effective and medically acceptable.

摘要

随着数字化和计算机辅助诊断的发展,近年来组织病理学图像分析受到了相当大的关注。本文针对皮肤活检图像的自动标注这一特殊类型的组织病理学图像分析问题展开研究。与组织病理学中先前研究充分的方法不同,我们提出了一种基于多实例学习框架的新型标注方法。该框架首先使用图割方法将每个皮肤活检图像表示为一个多实例样本,将图像分解为一组视觉上不相交的区域。然后,我们使用多实例学习算法构建两个分类模型,其中一个提供确定的结果,另一个计算后验概率。我们使用包含 6691 张皮肤活检图像和 15 个目标标注项的真实数据集来评估所提出的标注框架。结果表明,该方法是有效且符合医学要求的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/663d/3980401/208693b01aa4/1755-8794-6-S3-S10-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验