Suppr超能文献

数字乳腺摄影中乳腺实质组织的自适应多簇模糊C均值分割

Adaptive multi-cluster fuzzy C-means segmentation of breast parenchymal tissue in digital mammography.

作者信息

Keller Brad, Nathan Diane, Wang Yan, Zheng Yuanjie, Gee James, Conant Emily, Kontos Despina

机构信息

Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

Med Image Comput Comput Assist Interv. 2011;14(Pt 3):562-9. doi: 10.1007/978-3-642-23626-6_69.

Abstract

The relative fibroglandular tissue content in the breast, commonly referred to as breast density, has been shown to be the most significant risk factor for breast cancer after age. Currently, the most common approaches to quantify density are based on either semi-automated methods or visual assessment, both of which are highly subjective. This work presents a novel multi-class fuzzy c-means (FCM) algorithm for fully-automated identification and quantification of breast density, optimized for the imaging characteristics of digital mammography. The proposed algorithm involves adaptive FCM clustering based on an optimal number of clusters derived by the tissue properties of the specific mammogram, followed by generation of a final segmentation through cluster agglomeration using linear discriminant analysis. When evaluated on 80 bilateral screening digital mammograms, a strong correlation was observed between algorithm-estimated PD% and radiological ground-truth of r=0.83 (p<0.001) and an average Jaccard spatial similarity coefficient of 0.62. These results show promise for the clinical application of the algorithm in quantifying breast density in a repeatable manner.

摘要

乳房中的相对纤维腺体组织含量,通常称为乳房密度,已被证明是年龄增长后乳腺癌最重要的风险因素。目前,量化密度最常用的方法是基于半自动方法或视觉评估,这两种方法都具有高度主观性。这项工作提出了一种新颖的多类模糊c均值(FCM)算法,用于全自动识别和量化乳房密度,并针对数字乳腺摄影的成像特性进行了优化。所提出的算法包括基于特定乳房X光片的组织特性得出的最佳聚类数进行自适应FCM聚类,然后使用线性判别分析通过聚类合并生成最终分割。在80幅双侧筛查数字乳腺摄影图像上进行评估时,观察到算法估计的PD%与放射学真值之间存在很强的相关性,r = 0.83(p < 0.001),平均杰卡德空间相似系数为0.62。这些结果表明该算法在以可重复的方式量化乳房密度方面具有临床应用前景。

相似文献

1
Adaptive multi-cluster fuzzy C-means segmentation of breast parenchymal tissue in digital mammography.
Med Image Comput Comput Assist Interv. 2011;14(Pt 3):562-9. doi: 10.1007/978-3-642-23626-6_69.
7
Geometry-Based Pectoral Muscle Segmentation From MLO Mammogram Views.
IEEE Trans Biomed Eng. 2017 Nov;64(11):2662-2671. doi: 10.1109/TBME.2017.2649481.
9
Location of mammograms ROI's and reduction of false-positive.
Comput Methods Programs Biomed. 2017 May;143:97-111. doi: 10.1016/j.cmpb.2017.02.003. Epub 2017 Feb 24.
10
Radiomics based detection and characterization of suspicious lesions on full field digital mammograms.
Comput Methods Programs Biomed. 2018 Sep;163:1-20. doi: 10.1016/j.cmpb.2018.05.017. Epub 2018 May 18.

引用本文的文献

2
Breast Cancer Detection using Crow Search Optimization based Intuitionistic Fuzzy Clustering with Neighborhood Attraction.
Asian Pac J Cancer Prev. 2019 Jan 25;20(1):157-165. doi: 10.31557/APJCP.2019.20.1.157.
3
Automatic and fast segmentation of breast region-of-interest (ROI) and density in MRIs.
Heliyon. 2018 Dec 17;4(12):e01042. doi: 10.1016/j.heliyon.2018.e01042. eCollection 2018 Dec.
4
Integrating mammographic breast density in glandular dose calculation.
Br J Radiol. 2018 May;91(1085):20180032. doi: 10.1259/bjr.20180032. Epub 2018 Feb 13.
6
The Impact of Acquisition Dose on Quantitative Breast Density Estimation with Digital Mammography: Results from ACRIN PA 4006.
Radiology. 2016 Sep;280(3):693-700. doi: 10.1148/radiol.2016151749. Epub 2016 Mar 22.
7
A Review on Automatic Mammographic Density and Parenchymal Segmentation.
Int J Breast Cancer. 2015;2015:276217. doi: 10.1155/2015/276217. Epub 2015 Jun 11.

本文引用的文献

1
Screening and prevention of breast cancer in primary care.
Prim Care. 2009 Sep;36(3):533-58. doi: 10.1016/j.pop.2009.04.003.
2
Breast percent density: estimation on digital mammograms and central tomosynthesis projections.
Radiology. 2009 Jul;252(1):40-9. doi: 10.1148/radiol.2521081621. Epub 2009 May 6.
3
Mammographic density estimation: comparison among BI-RADS categories, a semi-automated software and a fully automated one.
Breast. 2009 Feb;18(1):35-40. doi: 10.1016/j.breast.2008.09.005. Epub 2008 Nov 17.
4
Mammographic density. Measurement of mammographic density.
Breast Cancer Res. 2008;10(3):209. doi: 10.1186/bcr2102. Epub 2008 Jun 19.
5
A novel breast tissue density classification methodology.
IEEE Trans Inf Technol Biomed. 2008 Jan;12(1):55-65. doi: 10.1109/TITB.2007.903514.
8
Accuracy of assigned BI-RADS breast density category definitions.
Acad Radiol. 2006 Sep;13(9):1143-9. doi: 10.1016/j.acra.2006.06.005.
10
Automated classification of parenchymal patterns in mammograms.
Phys Med Biol. 1998 Feb;43(2):365-78. doi: 10.1088/0031-9155/43/2/011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验