Suppr超能文献

纤维二糖脱氢酶和铜依赖型多糖单加氧酶增强粗糙脉孢菌对纤维素的降解。

Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa.

机构信息

Department of Molecular and Cell Biology, Lawrence Berkeley National Laboratory, University of California, Berkeley 94720, USA.

出版信息

ACS Chem Biol. 2011 Dec 16;6(12):1399-406. doi: 10.1021/cb200351y. Epub 2011 Oct 25.

Abstract

The high cost of enzymes for saccharification of lignocellulosic biomass is a major barrier to the production of second generation biofuels. Using a combination of genetic and biochemical techniques, we report that filamentous fungi use oxidative enzymes to cleave glycosidic bonds in cellulose. Deletion of cdh-1, the gene encoding the major cellobiose dehydrogenase of Neurospora crassa, reduced cellulase activity substantially, and addition of purified cellobiose dehydrogenases from M. thermophila to the Δcdh-1 strain resulted in a 1.6- to 2.0-fold stimulation in cellulase activity. Addition of cellobiose dehydrogenase to a mixture of purified cellulases showed no stimulatory effect. We show that cellobiose dehydrogenase enhances cellulose degradation by coupling the oxidation of cellobiose to the reductive activation of copper-dependent polysaccharide monooxygenases (PMOs) that catalyze the insertion of oxygen into C-H bonds adjacent to the glycosidic linkage. Three of these PMOs were characterized and shown to have different regiospecifities resulting in oxidized products modified at either the reducing or nonreducing end of a glucan chain. In contrast to previous models where oxidative enzymes were thought to produce reactive oxygen species that randomly attacked the substrate, the data here support a direct, enzyme-catalyzed oxidation of cellulose. Cellobiose dehydrogenases and proteins related to the polysaccharide monooxygenases described here are found throughout both ascomycete and basidiomycete fungi, suggesting that this model for oxidative cellulose degradation may be widespread throughout the fungal kingdom. When added to mixtures of cellulases, these proteins enhance cellulose saccharification, suggesting that they could be used to reduce the cost of biofuel production.

摘要

木质纤维素生物质糖化过程中酶制剂成本高是第二代生物燃料生产的主要障碍。我们采用遗传和生化技术相结合的方法,报告丝状真菌利用氧化酶切割纤维素中的糖苷键。敲除 Neurospora crassa 中主要的纤维二糖脱氢酶编码基因 cdh-1 ,会显著降低纤维素酶活性,而向 Δcdh-1 菌株中添加嗜热真菌的纯化纤维二糖脱氢酶则会使纤维素酶活性提高 1.6-2.0 倍。向混合的纯化纤维素酶中添加纤维二糖脱氢酶则没有刺激作用。我们表明,纤维二糖脱氢酶通过将纤维二糖的氧化偶联到还原激活铜依赖性多糖单加氧酶(PMO)上来增强纤维素的降解,后者催化氧插入糖苷键附近的 C-H 键。我们对其中三种 PMO 进行了表征,并表明它们具有不同的区域特异性,导致氧化产物在葡聚糖链的还原端或非还原端进行修饰。与先前认为氧化酶产生随机攻击底物的活性氧的模型不同,这里的数据支持纤维素的直接酶促氧化。纤维二糖脱氢酶和与多糖单加氧酶相关的蛋白在子囊菌和担子菌真菌中都有发现,这表明这种氧化纤维素降解模型可能在真菌界中广泛存在。当添加到纤维素酶混合物中时,这些蛋白会增强纤维素的糖化,表明它们可用于降低生物燃料生产的成本。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验