Deutsches Krebsforschungszentrum (DKFZ) and BioQuant, Research Group Genome Organization & Function, Heidelberg, Germany.
Biophys J. 2011 Oct 19;101(8):1999-2008. doi: 10.1016/j.bpj.2011.07.057.
The nucleosome complex of DNA wrapped around a histone protein octamer organizes the genome of eukaryotes and regulates the access of protein factors to the DNA. We performed molecular dynamics simulations of the nucleosome in explicit water to study the dynamics of its histone-DNA interactions. A high-resolution histone-DNA interaction map was derived that revealed a five-nucleotide periodicity, in which the two DNA strands of the double helix made alternating contacts. On the 100-ns timescale, the histone tails mostly maintained their initial positions relative to the DNA, and the spontaneous unwrapping of DNA was limited to 1-2 basepairs. In steered molecular dynamics simulations, external forces were applied to the linker DNA to investigate the unwrapping pathway of the nucleosomal DNA. In comparison with a nucleosome without the unstructured N-terminal histone tails, the following findings were obtained: 1), Two main barriers during unwrapping were identified at DNA position ±70 and ±45 basepairs relative to the central DNA basepair at the dyad axis. 2), DNA interactions of the histone H3 N-terminus and the histone H2A C-terminus opposed the initiation of unwrapping. 3), The N-terminal tails of H2A, H2B, and H4 counteracted the unwrapping process at later stages and were essential determinants of nucleosome dynamics. Our detailed analysis of DNA-histone interactions revealed molecular mechanisms for modulating access to nucleosomal DNA via conformational rearrangements of its structure.
DNA 缠绕在组蛋白八聚体上的核小体复合物组织真核生物的基因组并调节蛋白因子对 DNA 的访问。我们在显式水中对核小体进行了分子动力学模拟,以研究其组蛋白-DNA 相互作用的动力学。得出了高分辨率的组蛋白-DNA 相互作用图谱,揭示了五核苷酸的周期性,其中双螺旋的两条 DNA 链交替接触。在 100ns 的时间尺度上,组蛋白尾部相对于 DNA 大多保持其初始位置,并且 DNA 的自发解旋仅限于 1-2 个碱基对。在受导向的分子动力学模拟中,向连接 DNA 施加外力以研究核小体 DNA 的解旋途径。与没有无规卷曲的 N 端组蛋白尾部的核小体相比,得到了以下发现:1),在距中心 DNA 碱基对在二分轴上的±70 和±45 个碱基对的 DNA 位置处,鉴定出两个主要的解旋障碍。2),组蛋白 H3 N 端和组蛋白 H2A C 端的 DNA 相互作用阻碍了解旋的开始。3),H2A、H2B 和 H4 的 N 端尾部在后期阶段阻碍了解旋过程,是核小体动力学的重要决定因素。我们对 DNA-组蛋白相互作用的详细分析揭示了通过其结构的构象重排来调节进入核小体 DNA 的分子机制。