Suppr超能文献

心外膜爬行机器人与心跳和呼吸的同步,以提高运动的安全性和效率。

Synchronization of epicardial crawling robot with heartbeat and respiration for improved safety and efficiency of locomotion.

机构信息

The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA.

出版信息

Int J Med Robot. 2012 Mar;8(1):97-106. doi: 10.1002/rcs.442. Epub 2011 Oct 19.

Abstract

BACKGROUND

HeartLander is a miniature mobile robot designed to navigate over the epicardium of the beating heart for minimally invasive therapy. This paper presents a technique to decrease slippage and improve locomotion efficiency by synchronizing the locomotion with the intrapericardial pressure variations of the respiration and heartbeat cycles.

METHODS

Respiratory and heartbeat phases were detected in real time using a chest-mounted accelerometer during locomotion in a porcine model in vivo. Trials were conducted over the lateral aspect of the heart surface to test synchronized locomotion against an unsynchronized control.

RESULTS

Offline evaluation showed that the respiration and heartbeat algorithms had accuracies of 100% and 88%, respectively. Synchronized trials exhibited significantly lower friction, higher efficiency, and greater total distance traveled than control trials.

CONCLUSION

Synchronization of the locomotion of HeartLander with respiration and heartbeat is feasible and results in safer and more efficient travel on the beating heart.

摘要

背景

HeartLander 是一种微型移动机器人,旨在在心包膜上进行导航,以实现微创治疗。本文提出了一种通过使机器人的运动与呼吸和心跳周期的心包内压变化同步来减少滑动并提高运动效率的技术。

方法

在活体猪模型中运动时,使用胸部安装的加速度计实时检测呼吸和心跳相位。在心脏表面的侧面进行试验,以同步运动与非同步对照进行测试。

结果

离线评估表明,呼吸和心跳算法的准确性分别为 100%和 88%。同步试验表现出的摩擦力显著降低、效率更高,并且总行进距离也大于对照试验。

结论

使 HeartLander 的运动与呼吸和心跳同步是可行的,并且可以在跳动的心脏上实现更安全、更高效的运动。

相似文献

2
Fourier modeling of porcine heartbeat and respiration in vivo for synchronization of HeartLander robot locomotion.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:7041-4. doi: 10.1109/IEMBS.2011.6091780.
3
Minimally invasive epicardial injections using a novel semiautonomous robotic device.
Circulation. 2008 Sep 30;118(14 Suppl):S115-20. doi: 10.1161/CIRCULATIONAHA.107.756049.
4
Preliminary evaluation of a mobile robotic device for navigation and intervention on the beating heart.
Comput Aided Surg. 2005 Jul;10(4):225-32. doi: 10.3109/10929080500230197.
5
Improved traction for a mobile robot traveling on the heart.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:339-42. doi: 10.1109/IEMBS.2006.259532.
6
Percutaneous subxiphoid access to the epicardium using a miniature crawling robotic device.
Innovations (Phila). 2006 Fall;1(5):227-31. doi: 10.1097/01.IMI.0000240673.14388.fc.
7
Toward Onboard Estimation of Physiological Phase for an Epicardial Crawling Robot.
Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron. 2012 Dec 31;2012:6290716. doi: 10.1109/BioRob.2012.6290716.
8
Evaluation in vitro of a treatment planning algorithm for an epicardial crawling robot.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:2275-8. doi: 10.1109/IEMBS.2010.5627690.
9
Position Estimation of an Epicardial Crawling Robot on the Beating Heart by Modeling of Physiological Motion.
Rep U S. 2011 Dec 5;2011:4522-4527. doi: 10.1109/IROS.2011.6095084. Epub 2011 Sep 25.
10
Investigation of bioinspired gecko fibers to improve adhesion of HeartLander surgical robot.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:908-11. doi: 10.1109/EMBC.2012.6346079.

引用本文的文献

1
Robotics in cardiac surgery.
Ann R Coll Surg Engl. 2018 Sep;100(Suppl 7):22-33. doi: 10.1308/rcsann.supp2.22.
2
Beating-heart registration for organ-mounted robots.
Int J Med Robot. 2018 Aug;14(4):e1905. doi: 10.1002/rcs.1905. Epub 2018 Mar 6.
3
Techniques for epicardial mapping and ablation with a miniature robotic walker.
Robot Surg. 2017;4:25-31. doi: 10.2147/RSRR.S127047. Epub 2017 Mar 23.
4
Physiological motion modeling for organ-mounted robots.
Int J Med Robot. 2017 Dec;13(4). doi: 10.1002/rcs.1805. Epub 2017 Feb 17.
5
Toward Onboard Estimation of Physiological Phase for an Epicardial Crawling Robot.
Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron. 2012 Dec 31;2012:6290716. doi: 10.1109/BioRob.2012.6290716.
6
Investigation of bioinspired gecko fibers to improve adhesion of HeartLander surgical robot.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:908-11. doi: 10.1109/EMBC.2012.6346079.
7
Position Estimation of an Epicardial Crawling Robot on the Beating Heart by Modeling of Physiological Motion.
Rep U S. 2011 Dec 5;2011:4522-4527. doi: 10.1109/IROS.2011.6095084. Epub 2011 Sep 25.
8
Fourier modeling of porcine heartbeat and respiration in vivo for synchronization of HeartLander robot locomotion.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:7041-4. doi: 10.1109/IEMBS.2011.6091780.

本文引用的文献

1
Heart Motion Prediction Based on Adaptive Estimation Algorithms for Robotic Assisted Beating Heart Surgery.
IEEE Trans Robot. 2013 Feb 1;29(1):261-276. doi: 10.1109/TRO.2012.2217676.
2
A Miniature Mobile Robot for Navigation and Positioning on the Beating Heart.
IEEE Trans Robot. 2009;25(5):1109-1124. doi: 10.1109/tro.2009.2027375.
3
Motion prediction for computer-assisted beating heart surgery.
IEEE Trans Biomed Eng. 2009 Nov;56(11):2551-63. doi: 10.1109/TBME.2009.2026054. Epub 2009 Jun 26.
5
Minimally invasive epicardial injections using a novel semiautonomous robotic device.
Circulation. 2008 Sep 30;118(14 Suppl):S115-20. doi: 10.1161/CIRCULATIONAHA.107.756049.
6
Mapping the human body for vibrations using an accelerometer.
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:1671-4. doi: 10.1109/IEMBS.2007.4352629.
7
Robotics in cardiac surgery: the Emperor's new clothes.
J Thorac Cardiovasc Surg. 2007 Sep;134(3):559-61. doi: 10.1016/j.jtcvs.2006.08.026.
8
Do cardiac stabilizers really stabilize? Experimental quantitative analysis of mechanical stabilization.
Interact Cardiovasc Thorac Surg. 2005 Jun;4(3):222-6. doi: 10.1510/icvts.2004.098517. Epub 2005 Mar 29.
10
Toward robotized beating heart TECABG: assessment of the heart dynamics using high-speed vision.
Med Image Comput Comput Assist Interv. 2005;8(Pt 2):551-8. doi: 10.1007/11566489_68.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验