Suppr超能文献

基于具有尺度不变特征的概率潜在语义分析的无监督学习方法的无线胶囊内镜视频分割

Wireless capsule endoscopy video segmentation using an unsupervised learning approach based on probabilistic latent semantic analysis with scale invariant features.

作者信息

Shen Yao, Guturu Parthasarathy Partha, Buckles Bill P

机构信息

Department of Computer Science and Engineering, College of Engineering, University of North Texas, Denton, TX 76203, USA.

出版信息

IEEE Trans Inf Technol Biomed. 2012 Jan;16(1):98-105. doi: 10.1109/TITB.2011.2171977. Epub 2011 Oct 17.

Abstract

Since wireless capsule endoscopy (WCE) is a novel technology for recording the videos of the digestive tract of a patient, the problem of segmenting the WCE video of the digestive tract into subvideos corresponding to the entrance, stomach, small intestine, and large intestine regions is not well addressed in the literature. A selected few papers addressing this problem follow supervised leaning approaches that presume availability of a large database of correctly labeled training samples. Considering the difficulties in procuring sizable WCE training data sets needed for achieving high classification accuracy, we introduce in this paper an unsupervised learning approach that employs Scale Invariant Feature Transform (SIFT) for extraction of local image features and the probabilistic latent semantic analysis (pLSA) model used in the linguistic content analysis for data clustering. Results of experimentation indicate that this method compares well in classification accuracy with the state-of-the-art supervised classification approaches to WCE video segmentation.

摘要

由于无线胶囊内窥镜检查(WCE)是一种用于记录患者消化道视频的新技术,将消化道的WCE视频分割成与食管、胃、小肠和大肠区域相对应的子视频这一问题在文献中并未得到很好的解决。少数几篇论述该问题的论文采用了监督学习方法,这些方法假定存在一个带有正确标注的训练样本的大型数据库。考虑到获取实现高分类准确率所需的大量WCE训练数据集存在困难,我们在本文中引入了一种无监督学习方法,该方法采用尺度不变特征变换(SIFT)来提取局部图像特征,并采用语言内容分析中使用的概率潜在语义分析(pLSA)模型进行数据聚类。实验结果表明,该方法在分类准确率方面与用于WCE视频分割的最新监督分类方法相当。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验