Suppr超能文献

用于体内机器人移动性的小肠初步力学特性研究

Preliminary mechanical characterization of the small bowel for in vivo robotic mobility.

作者信息

Terry Benjamin S, Lyle Allison B, Schoen Jonathan A, Rentschler Mark E

机构信息

Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, CO 80309-0427, USA.

出版信息

J Biomech Eng. 2011 Sep;133(9):091010. doi: 10.1115/1.4005168.

Abstract

In this work we present test methods, devices, and preliminary results for the mechanical characterization of the small bowel for intra luminal robotic mobility. Both active and passive forces that affect mobility are investigated. Four investigative devices and testing methods to characterize the active and passive forces are presented in this work: (1) a novel manometer and a force sensor array that measure force per cm of axial length generated by the migrating motor complex, (2) a biaxial test apparatus and method for characterizing the biomechanical properties of the duodenum, jejunum, and ileum, (3) a novel in vitro device and protocol designed to measure the energy required to overcome the self-adhesivity of the mucosa, and (4) a novel tribometer that measures the in vivo coefficient of friction between the mucus membrane and the robot surface. The four devices are tested on a single porcine model to validate the approach and protocols. Mean force readings per cm of axial length of intestine that occurred over a 15 min interval in vivo were 1.34 ± 0.14 and 1.18 ± 0.22 N cm(-1) in the middle and distal regions, respectively. Based on the biaxial stress/stretch tests, the tissue behaves anisotropically with the circumferential direction being more compliant than the axial direction. The mean work per unit area for mucoseparation of the small bowel is 0.08 ± 0.03 mJ cm(-2). The total energy to overcome mucoadhesion over the entire length of the porcine small bowel is approximately 0.55 J. The mean in vivo coefficient of friction (COF) of a curved 6.97 cm(2) polycarbonate sled on live mucosa traveling at 1 mm s(-1) is 0.016 ± 0.002. This is slightly lower than the COF on excised tissue, given the same input parameters. We have initiated a comprehensive program and suite of test devices and protocols for mechanically characterizing the small bowel for in vivo mobility. Results show that each of the four protocols and associated test devices has successfully gathered preliminary data to confirm the validity of our test approach.

摘要

在这项工作中,我们展示了用于腔内机器人移动性的小肠机械特性表征的测试方法、装置及初步结果。研究了影响移动性的主动力和被动力。本文介绍了四种用于表征主动力和被动力的研究装置及测试方法:(1)一种新型压力计和力传感器阵列,用于测量由移行运动复合波产生的每厘米轴向长度的力;(2)一种双轴测试装置及方法,用于表征十二指肠、空肠和回肠的生物力学特性;(3)一种新型体外装置及方案,旨在测量克服黏膜自粘性所需的能量;(4)一种新型摩擦计,用于测量黏膜与机器人表面之间的体内摩擦系数。在单个猪模型上对这四种装置进行了测试,以验证该方法和方案。在体内15分钟间隔内,小肠每厘米轴向长度的平均力读数在中部和远端区域分别为1.34±0.14和1.18±0.22 N cm⁻¹。基于双轴应力/拉伸测试,组织表现出各向异性,圆周方向比轴向方向更具柔韧性。小肠黏膜分离的单位面积平均功为0.08±0.03 mJ cm⁻²。克服猪小肠全长黏膜粘附的总能量约为0.55 J。在活体黏膜上以1 mm s⁻¹速度行进的6.97 cm²弯曲聚碳酸酯滑板的平均体内摩擦系数(COF)为0.016±0.002。在相同输入参数下,这略低于在切除组织上的COF。我们已启动一个全面的项目以及一套测试装置和方案,用于对小肠进行体内移动性的机械特性表征。结果表明,这四种方案及相关测试装置均成功收集了初步数据,以证实我们测试方法的有效性。

相似文献

1
Preliminary mechanical characterization of the small bowel for in vivo robotic mobility.
J Biomech Eng. 2011 Sep;133(9):091010. doi: 10.1115/1.4005168.
2
Small intestine mucosal adhesivity to in vivo capsule robot materials.
J Mech Behav Biomed Mater. 2012 Nov;15:24-32. doi: 10.1016/j.jmbbm.2012.06.018. Epub 2012 Jul 6.
3
Characterization and experimental results of a novel sensor for measuring the contact force from myenteric contractions.
IEEE Trans Biomed Eng. 2012 Jul;59(7):1971-7. doi: 10.1109/TBME.2012.2195179. Epub 2012 Apr 18.
4
Experimental study and biomechanical characterization for the passive small intestine: Identification of regional differences.
J Mech Behav Biomed Mater. 2017 Oct;74:93-105. doi: 10.1016/j.jmbbm.2017.05.026. Epub 2017 May 19.
6
Morphology and stress-strain properties along the small intestine in the rat.
J Biomech Eng. 2003 Apr;125(2):266-73. doi: 10.1115/1.1560140.
7
Anisotropic and nonlinear biaxial mechanical response of porcine small bowel mesentery.
J Mech Behav Biomed Mater. 2018 Feb;78:154-163. doi: 10.1016/j.jmbbm.2017.11.017. Epub 2017 Nov 11.
8
Intestinal biomechanics simulator for robotic capsule endoscope validation.
J Med Eng Technol. 2015 Jan;39(1):54-9. doi: 10.3109/03091902.2014.973619. Epub 2014 Nov 4.
9
Morphometric and biomechanical intestinal remodeling induced by fasting in rats.
Dig Dis Sci. 2002 May;47(5):1158-68. doi: 10.1023/a:1015019030514.
10
Experimental research on anchoring force in intestine for the motion of capsule robot.
J Med Eng Technol. 2013 Jul;37(5):334-41. doi: 10.3109/03091902.2013.812688.

引用本文的文献

1
Mechanical experimentation of the gastrointestinal tract: a systematic review.
Biomech Model Mechanobiol. 2024 Feb;23(1):23-59. doi: 10.1007/s10237-023-01773-8. Epub 2023 Nov 8.
2
Villi Inspired Mechanical Interlocking for Intestinal Retentive Devices.
Adv Sci (Weinh). 2023 Oct;10(30):e2301084. doi: 10.1002/advs.202301084. Epub 2023 Jul 14.
3
Gelatin-Based Ingestible Impedance Sensor to Evaluate Gastrointestinal Epithelial Barriers.
Adv Mater. 2023 Apr;35(17):e2211581. doi: 10.1002/adma.202211581. Epub 2023 Mar 18.
4
Sensorless Estimation of the Planar Distal Shape of a Tip-Actuated Endoscope.
IEEE Robot Autom Lett. 2019 Oct;4(4):3371-3377. doi: 10.1109/LRA.2019.2926964. Epub 2019 Jul 4.
5
Mechanically induced development and maturation of human intestinal organoids in vivo.
Nat Biomed Eng. 2018 Jun;2(6):429-442. doi: 10.1038/s41551-018-0243-9. Epub 2018 Jun 4.
6
Measurements of the contact force from myenteric contractions on a solid bolus.
J Robot Surg. 2013 Mar;7(1):53-7. doi: 10.1007/s11701-012-0346-3. Epub 2012 Mar 14.
7
Capsule endoscopy of the future: What's on the horizon?
World J Gastroenterol. 2015 Oct 7;21(37):10528-41. doi: 10.3748/wjg.v21.i37.10528.

本文引用的文献

1
Small bowel motility in functional chronic constipation.
Neurogastroenterol Motil. 2009 Dec;21(12):1278-e122. doi: 10.1111/j.1365-2982.2009.01364.x. Epub 2009 Jul 15.
2
A legged anchoring mechanism for capsule endoscopes using micropatterned adhesives.
IEEE Trans Biomed Eng. 2008 Dec;55(12):2759-67. doi: 10.1109/TBME.2008.2002111.
3
An earthworm-like robotic endoscope system for human intestine: design, analysis, and experiment.
Ann Biomed Eng. 2009 Jan;37(1):210-21. doi: 10.1007/s10439-008-9597-6. Epub 2008 Nov 12.
4
Feasibility proof of a legged locomotion capsule for the GI tract.
Gastrointest Endosc. 2008 Jun;67(7):1153-8. doi: 10.1016/j.gie.2007.11.052.
5
Mucoadhesive films inside the colonic tube: performance in a three-dimensional world.
J R Soc Interface. 2008 Nov 6;5(28):1353-62. doi: 10.1098/rsif.2008.0075.
6
Time-dependent biaxial mechanical behavior of the aortic heart valve leaflet.
J Biomech. 2007;40(14):3169-77. doi: 10.1016/j.jbiomech.2007.04.001. Epub 2007 Jun 13.
7
Dynamics of intestinal propulsion.
J Theor Biol. 2007 May 21;246(2):377-93. doi: 10.1016/j.jtbi.2007.01.006. Epub 2007 Jan 20.
8
Fiber kinematics of small intestinal submucosa under biaxial and uniaxial stretch.
J Biomech Eng. 2006 Dec;128(6):890-8. doi: 10.1115/1.2354200.
9
A primer on natural orifice transluminal endoscopic surgery: building a new paradigm.
Surg Innov. 2006 Jun;13(2):86-93. doi: 10.1177/1553350606290529.
10
Friction manipulation for intestinal locomotion.
Minim Invasive Ther Allied Technol. 2005;14(3):188-97. doi: 10.1080/13645700510033985.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验