Suppr超能文献

壳聚糖通过上调相关基因增强人骨髓间充质干细胞成骨分化过程中的矿化作用。

Chitosan enhances mineralization during osteoblast differentiation of human bone marrow-derived mesenchymal stem cells, by upregulating the associated genes.

机构信息

Manipal Institute of Regenerative Medicine, Manipal University, Domlur, Bangalore, India Kasiak Research Pvt. Ltd., Makers Chamber VI, Nariman Point, Mumbai, India.

出版信息

Cell Prolif. 2011 Dec;44(6):537-49. doi: 10.1111/j.1365-2184.2011.00788.x. Epub 2011 Oct 20.

Abstract

OBJECTIVES

Chitosan is widely used as a scaffold for bone tissue engineering. However, up-to-date, no previous detailed study has been conducted to elucidate any mechanism of osteogenesis by chitosan itself. Here, we have evaluated effects of chitosan-coated tissue culture plates on adhesion and osteoblast differentiation processes of human mesenchymal stem cells (hMSCs), isolated from adult bone marrow.

MATERIALS AND METHODS

Tissue culture plates coated with chitosan at different coating densities were used to evaluate the effects on hMSC adhesion and osteoblast differentiation. hMSCs were induced to differentiate into osteoblasts on the chitosan-coated plates and were evaluated using established techniques: alkaline phosphatase assay, demonstration of presence of calcium and real time PCR.

RESULTS

The cells adhered to plates of lower coating density of chitosan, but formed viable cell aggregates at higher coating density (100 μg/sq.cm). Coating density of 25 μg/sq.cm, supporting cell adhesion was chosen for osteoblast differentiation experiments. Differentiating hMSCs showed higher mineral deposition and calcium content on chitosan-coated plates. Chitosan upregulated genes associated with calcium binding and mineralization such as collagen type 1 alpha 1, integrin-binding sialoprotein, osteopontin, osteonectin and osteocalcin, significantly.

CONCLUSIONS

We demonstrate for the first time that chitosan enhanced mineralization by upregulating the associated genes. Thus, the study may help clinical situations promoting use of chitosan in bone mineralization, necessary for healing non-union fractures and more.

摘要

目的

壳聚糖被广泛用作骨组织工程的支架。然而,迄今为止,尚无先前的详细研究阐明壳聚糖本身的成骨机制。在这里,我们评估了壳聚糖包被的组织培养板对人骨髓间充质干细胞(hMSC)黏附和成骨细胞分化过程的影响。

材料和方法

使用不同包被密度的壳聚糖包被组织培养板,以评估其对 hMSC 黏附和成骨细胞分化的影响。将 hMSC 诱导分化为成骨细胞,并使用已建立的技术进行评估:碱性磷酸酶测定、钙存在的证明和实时 PCR。

结果

细胞黏附在壳聚糖低包被密度的平板上,但在高包被密度(100μg/sq.cm)下形成存活的细胞聚集体。选择 25μg/sq.cm 的包被密度进行成骨细胞分化实验。分化的 hMSC 在壳聚糖包被的平板上显示出更高的矿化和钙含量。壳聚糖显著上调与钙结合和矿化相关的基因,如胶原类型 1α1、整合素结合唾液蛋白、骨桥蛋白、骨连接蛋白和骨钙素。

结论

我们首次证明壳聚糖通过上调相关基因增强了矿化。因此,该研究可能有助于促进壳聚糖在骨矿化中的临床应用,这对于治疗骨不连骨折等情况非常重要。

相似文献

3
Growth of mesenchymal stem cells on electrospun type I collagen nanofibers.
Stem Cells. 2006 Nov;24(11):2391-7. doi: 10.1634/stemcells.2006-0253.
4
8
Aesculetin Accelerates Osteoblast Differentiation and Matrix-Vesicle-Mediated Mineralization.
Int J Mol Sci. 2021 Nov 17;22(22):12391. doi: 10.3390/ijms222212391.
9
Glycosaminoglycans enhance osteoblast differentiation of bone marrow derived human mesenchymal stem cells.
J Tissue Eng Regen Med. 2014 Feb;8(2):143-52. doi: 10.1002/term.1507. Epub 2012 Apr 12.
10

引用本文的文献

1
Chitosan-based formulations for therapeutic applications. A recent overview.
J Biomed Sci. 2025 Jul 8;32(1):62. doi: 10.1186/s12929-025-01161-7.
3
Chitosan/Hyaluronan and Alginate-Nanohydroxyapatite Biphasic Scaffold as a Promising Matrix for Osteoarthritis Disorders.
Adv Pharm Bull. 2024 Mar;14(1):176-191. doi: 10.34172/apb.2024.005. Epub 2023 Jul 22.
7
Effect of chitosan/inorganic nanomaterial scaffolds on bone regeneration and related influencing factors in animal models: A systematic review.
Front Bioeng Biotechnol. 2022 Oct 26;10:986212. doi: 10.3389/fbioe.2022.986212. eCollection 2022.
8
Biomimetic chitosan with biocomposite nanomaterials for bone tissue repair and regeneration.
Beilstein J Nanotechnol. 2022 Sep 29;13:1051-1067. doi: 10.3762/bjnano.13.92. eCollection 2022.
10

本文引用的文献

1
Clinical application of human mesenchymal stromal cells for bone tissue engineering.
Stem Cells Int. 2010 Nov 11;2010:215625. doi: 10.4061/2010/215625.
2
Chitosan composites for bone tissue engineering--an overview.
Mar Drugs. 2010 Aug 2;8(8):2252-66. doi: 10.3390/md8082252.
3
Regenerative medicine: basic concepts, current status, and future applications.
J Investig Med. 2010 Oct;58(7):849-58. doi: 10.231/JIM.0b013e3181efbc61.
4
Transcriptional regulation of bone formation by the osteoblast-specific transcription factor Osx.
J Orthop Surg Res. 2010 Jun 15;5:37. doi: 10.1186/1749-799X-5-37.
7
Normal bone anatomy and physiology.
Clin J Am Soc Nephrol. 2008 Nov;3 Suppl 3(Suppl 3):S131-9. doi: 10.2215/CJN.04151206.
8
The effect of chitosan on the migration of neutrophil-like HL60 cells, mediated by IL-8.
Biomaterials. 2009 Feb;30(4):436-44. doi: 10.1016/j.biomaterials.2008.09.060. Epub 2008 Oct 31.
10
New biomaterials as scaffolds for tissue engineering.
Pharm Res. 2008 Oct;25(10):2345-7. doi: 10.1007/s11095-008-9666-4. Epub 2008 Jul 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验