Lopresti Francesco, Campora Simona, Rigogliuso Salvatrice, Nicosia Aldo, Lo Cicero Alessandra, Di Marco Chiara, Tornabene Salvatore, Ghersi Giulio, La Carrubba Vincenzo
Department of Engineering, University of Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy.
Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy.
Int J Mol Sci. 2024 Feb 21;25(5):2507. doi: 10.3390/ijms25052507.
Electrospun hybrid scaffolds composed of synthetic and natural polymers have gained increasing interest in tissue engineering applications over the last decade. In this work, scaffolds composed of polylactic acid electrospun fibers, either treated (P-PLA) or non-treated (PLA) with air-plasma, were coated with high molecular weight chitosan to create a core-shell microfibrous structure. The effective thickness control of the chitosan layer was confirmed by gravimetric, spectroscopic (FTIR-ATR) and morphological (SEM) investigations. The chitosan coating increased the fiber diameter of the microfibrous scaffolds while the tensile mechanical tests, conducted in dry and wet environments, showed a reinforcing action of the coating layer on the scaffolds, in particular when deposited on P-PLA samples. The stability of the Chi coating on both PLA and P-PLA substrates was confirmed by gravimetric analysis, while their mineralization capacity was evaluated though scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) after immersing the scaffolds in simulated body fluids (SBF) at 37 °C for 1 week. Sample biocompatibility was investigated through cell viability assay and SEM analysis on mouse pre-osteoblastic MC3T3-E1 cells grown on scaffolds at different times (1, 7, 14 and 21 days). Finally, Alizarin Red assay and qPCR analysis suggested that the combination of plasma treatment and chitosan coating on PLA electrospun scaffolds influences the osteoblastic differentiation of MC3T3-E1 cells, thus demonstrating the great potential of P-PLA/chitosan hybrid scaffolds for bone tissue engineering applications.
在过去十年中,由合成聚合物和天然聚合物组成的电纺混合支架在组织工程应用中越来越受到关注。在这项工作中,用空气等离子体处理(P-PLA)或未处理(PLA)的聚乳酸电纺纤维组成的支架,被涂上了高分子量壳聚糖,以形成核壳微纤维结构。通过重量分析、光谱分析(傅里叶变换红外衰减全反射光谱法,FTIR-ATR)和形态分析(扫描电子显微镜,SEM)证实了壳聚糖层的有效厚度控制。壳聚糖涂层增加了微纤维支架的纤维直径,而在干燥和潮湿环境中进行的拉伸力学测试表明,涂层对支架有增强作用,特别是当沉积在P-PLA样品上时。通过重量分析证实了壳聚糖涂层在PLA和P-PLA基材上的稳定性,而在将支架在37°C的模拟体液(SBF)中浸泡1周后,通过扫描电子显微镜(SEM)和能量色散光谱(EDS)评估了它们的矿化能力。通过对在支架上不同时间(1、7、14和21天)生长的小鼠前成骨细胞MC3T3-E1进行细胞活力测定和SEM分析,研究了样品的生物相容性。最后,茜素红测定和qPCR分析表明,PLA电纺支架上的等离子体处理和壳聚糖涂层的组合影响了MC3T3-E1细胞的成骨分化,从而证明了P-PLA/壳聚糖混合支架在骨组织工程应用中的巨大潜力。