文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Improvement of Osteogenic Differentiation of Mouse Pre-Osteoblastic MC3T3-E1 Cells on Core-Shell Polylactic Acid/Chitosan Electrospun Scaffolds for Bone Defect Repair.

作者信息

Lopresti Francesco, Campora Simona, Rigogliuso Salvatrice, Nicosia Aldo, Lo Cicero Alessandra, Di Marco Chiara, Tornabene Salvatore, Ghersi Giulio, La Carrubba Vincenzo

机构信息

Department of Engineering, University of Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy.

Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy.

出版信息

Int J Mol Sci. 2024 Feb 21;25(5):2507. doi: 10.3390/ijms25052507.


DOI:10.3390/ijms25052507
PMID:38473755
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10931705/
Abstract

Electrospun hybrid scaffolds composed of synthetic and natural polymers have gained increasing interest in tissue engineering applications over the last decade. In this work, scaffolds composed of polylactic acid electrospun fibers, either treated (P-PLA) or non-treated (PLA) with air-plasma, were coated with high molecular weight chitosan to create a core-shell microfibrous structure. The effective thickness control of the chitosan layer was confirmed by gravimetric, spectroscopic (FTIR-ATR) and morphological (SEM) investigations. The chitosan coating increased the fiber diameter of the microfibrous scaffolds while the tensile mechanical tests, conducted in dry and wet environments, showed a reinforcing action of the coating layer on the scaffolds, in particular when deposited on P-PLA samples. The stability of the Chi coating on both PLA and P-PLA substrates was confirmed by gravimetric analysis, while their mineralization capacity was evaluated though scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) after immersing the scaffolds in simulated body fluids (SBF) at 37 °C for 1 week. Sample biocompatibility was investigated through cell viability assay and SEM analysis on mouse pre-osteoblastic MC3T3-E1 cells grown on scaffolds at different times (1, 7, 14 and 21 days). Finally, Alizarin Red assay and qPCR analysis suggested that the combination of plasma treatment and chitosan coating on PLA electrospun scaffolds influences the osteoblastic differentiation of MC3T3-E1 cells, thus demonstrating the great potential of P-PLA/chitosan hybrid scaffolds for bone tissue engineering applications.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc6e/10931705/42242add487c/ijms-25-02507-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc6e/10931705/3d9cebc399e3/ijms-25-02507-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc6e/10931705/aa16d33a5891/ijms-25-02507-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc6e/10931705/848af5db43ad/ijms-25-02507-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc6e/10931705/fe547dce82ae/ijms-25-02507-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc6e/10931705/7f1d2dd605ba/ijms-25-02507-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc6e/10931705/506e4c884f1d/ijms-25-02507-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc6e/10931705/5aae03aa9274/ijms-25-02507-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc6e/10931705/ecef77bca021/ijms-25-02507-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc6e/10931705/74542f32ae71/ijms-25-02507-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc6e/10931705/440ac3ec80f2/ijms-25-02507-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc6e/10931705/4d1faf831fea/ijms-25-02507-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc6e/10931705/42242add487c/ijms-25-02507-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc6e/10931705/3d9cebc399e3/ijms-25-02507-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc6e/10931705/aa16d33a5891/ijms-25-02507-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc6e/10931705/848af5db43ad/ijms-25-02507-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc6e/10931705/fe547dce82ae/ijms-25-02507-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc6e/10931705/7f1d2dd605ba/ijms-25-02507-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc6e/10931705/506e4c884f1d/ijms-25-02507-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc6e/10931705/5aae03aa9274/ijms-25-02507-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc6e/10931705/ecef77bca021/ijms-25-02507-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc6e/10931705/74542f32ae71/ijms-25-02507-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc6e/10931705/440ac3ec80f2/ijms-25-02507-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc6e/10931705/4d1faf831fea/ijms-25-02507-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc6e/10931705/42242add487c/ijms-25-02507-g012.jpg

相似文献

[1]
Improvement of Osteogenic Differentiation of Mouse Pre-Osteoblastic MC3T3-E1 Cells on Core-Shell Polylactic Acid/Chitosan Electrospun Scaffolds for Bone Defect Repair.

Int J Mol Sci. 2024-2-21

[2]
Core-shell PLA/Kef hybrid scaffolds for skin tissue engineering applications prepared by direct kefiran coating on PLA electrospun fibers optimized via air-plasma treatment.

Mater Sci Eng C Mater Biol Appl. 2021-8

[3]
The use of chitosan/PLA nano-fibers by emulsion eletrospinning for periodontal tissue engineering.

Artif Cells Nanomed Biotechnol. 2018-4-16

[4]
Development of core-shell coaxially electrospun composite PCL/chitosan scaffolds.

Int J Biol Macromol. 2016-11

[5]
Physical and biological properties of electrospun poly(d,l-lactide)/nanoclay and poly(d,l-lactide)/nanosilica nanofibrous scaffold for bone tissue engineering.

J Biomed Mater Res A. 2021-11

[6]
Polylactic Acid Nanofiber Scaffold Decorated with Chitosan Islandlike Topography for Bone Tissue Engineering.

ACS Appl Mater Interfaces. 2017-6-19

[7]
Fabrication and characterization of heparin-grafted poly-L-lactic acid-chitosan core-shell nanofibers scaffold for vascular gasket.

ACS Appl Mater Interfaces. 2013-4-29

[8]
Biomimetic mineralization on natural and synthetic polymers to prepare hybrid scaffolds for bone tissue engineering.

Colloids Surf B Biointerfaces. 2019-3-4

[9]
Electrospun polylactic acid scaffolds with strontium- and cobalt-doped bioglass for potential use in bone tissue engineering applications.

J Biomed Mater Res B Appl Biomater. 2023-1

[10]
Preparation and characterization of collagen/PLA, chitosan/PLA, and collagen/chitosan/PLA hybrid scaffolds for cartilage tissue engineering.

J Mater Sci Mater Med. 2014-4

引用本文的文献

[1]
A Novel Tumor on Chip Mimicking the Breast Cancer Microenvironment for Dynamic Drug Screening.

Int J Mol Sci. 2025-1-25

本文引用的文献

[1]
An electrospun scaffold functionalized with a ROS-scavenging hydrogel stimulates ocular wound healing.

Acta Biomater. 2023-3-1

[2]
Characterization of Electrospun Polysuccinimide-Dopamine Conjugates and Effect on Cell Viability and Uptake.

Macromol Biosci. 2023-3

[3]
Composite Coatings of Chitosan and Silver Nanoparticles Obtained by Galvanic Deposition for Orthopedic Implants.

Polymers (Basel). 2022-9-19

[4]
Recent advances in 3D-printed polylactide and polycaprolactone-based biomaterials for tissue engineering applications.

Int J Biol Macromol. 2022-10-1

[5]
Enhanced osteogenic differentiation of stem cells by 3D printed PCL scaffolds coated with collagen and hydroxyapatite.

Sci Rep. 2022-7-20

[6]
A collagen/PLA hybrid scaffold supports tendon-derived cell growth for tendon repair and regeneration.

J Biomed Mater Res B Appl Biomater. 2022-12

[7]
Effect of Polyhydroxyalkanoate (PHA) Concentration on Polymeric Scaffolds Based on Blends of Poly-L-Lactic Acid (PLLA) and PHA Prepared via Thermally Induced Phase Separation (TIPS).

Polymers (Basel). 2022-6-19

[8]
Polymers Based on PLA from Synthesis Using D,L-Lactic Acid (or Racemic Lactide) and Some Biomedical Applications: A Short Review.

Polymers (Basel). 2022-6-8

[9]
Poly-l-Lactic Acid (PLLA)-Based Biomaterials for Regenerative Medicine: A Review on Processing and Applications.

Polymers (Basel). 2022-3-14

[10]
A review on super-wettable porous membranes and materials based on bio-polymeric chitosan for oil-water separation.

Adv Colloid Interface Sci. 2022-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索