Graduate School of Public Health, Seoul National University, Seoul, South Korea.
Qual Life Res. 2012 Sep;21(7):1193-203. doi: 10.1007/s11136-011-0037-y. Epub 2011 Oct 20.
To develop a mapping algorithm for a conversion of the EORTC QLQ-C30 and EORTC QLQ BR-23 into the EQ-5D-derived utilities in metastatic breast cancer (MBC) patients.
We enrolled 199 patients with MBC from four leading Korean hospitals in 2009. EQ-5D utility, cancer-specific (QLQ-C30) and breast cancer-specific quality of life data (QLQ-BR23) and selected clinical and demographic information were collected from the study participants. Ordinary least squares regression models were used to model the EQ-5D using QLQ-C30 and QLQ-BR23 scale scores. To select the best model specification, six different sets of explanatory variables were compared.
Regression analysis with the multiitem scale scores of QLQ-C30 was the best-performing model, explaining for 48.7% of the observed EQ-5D variation. Its mean absolute error between the observed and predicted EQ-5D utilities (0.092) and relative prediction error (2.784%) was among the smallest. Also, this mapping model showed the least systematic errors according to disease severity.
The mapping algorithms developed have good predictive validity, and therefore, they enable researchers to translate cancer-specific health-related quality of life measures to the preference-adjusted health status of MBC patients.
开发一种将 EORTC QLQ-C30 和 EORTC QLQ BR-23 转化为转移性乳腺癌(MBC)患者 EQ-5D 衍生效用的映射算法。
我们于 2009 年从四家韩国领先医院招募了 199 名 MBC 患者。从研究参与者那里收集了 EQ-5D 效用、癌症特异性(QLQ-C30)和乳腺癌特异性生活质量数据(QLQ-BR23)以及选定的临床和人口统计学信息。使用普通最小二乘法回归模型来建立 EQ-5D 与 QLQ-C30 和 QLQ-BR23 量表评分的关系模型。为了选择最佳的模型规范,比较了六个不同的解释变量集。
使用 QLQ-C30 的多项目量表评分的回归分析是表现最佳的模型,解释了观察到的 EQ-5D 变化的 48.7%。它的观察到的和预测的 EQ-5D 效用之间的平均绝对误差(0.092)和相对预测误差(2.784%)最小。此外,根据疾病严重程度,该映射模型显示出最小的系统误差。
所开发的映射算法具有良好的预测有效性,因此,它们使研究人员能够将癌症特异性健康相关生活质量测量转化为 MBC 患者的偏好调整后的健康状况。