Suppr超能文献

相似文献

2
A site-selective dual anchoring strategy for artificial metalloprotein design.
J Am Chem Soc. 2004 Sep 8;126(35):10812-3. doi: 10.1021/ja046908x.
3
Hemoproteins Reconstituted with Artificial Metal Complexes as Biohybrid Catalysts.
Acc Chem Res. 2019 Apr 16;52(4):945-954. doi: 10.1021/acs.accounts.8b00676. Epub 2019 Apr 1.
4
Molecular Modeling for Artificial Metalloenzyme Design and Optimization.
Acc Chem Res. 2020 Apr 21;53(4):896-905. doi: 10.1021/acs.accounts.0c00031. Epub 2020 Apr 1.
5
Design of artificial metalloenzymes for the reduction of nicotinamide cofactors.
J Inorg Biochem. 2021 Jul;220:111446. doi: 10.1016/j.jinorgbio.2021.111446. Epub 2021 Apr 2.
7
Cofactor Binding Dynamics Influence the Catalytic Activity and Selectivity of an Artificial Metalloenzyme.
ACS Catal. 2020 Oct 16;10(20):11783-11790. doi: 10.1021/acscatal.0c01619. Epub 2020 Sep 18.
10
Functional metalloenzymes based on myoglobin and neuroglobin that exploit covalent interactions.
J Inorg Biochem. 2024 Aug;257:112595. doi: 10.1016/j.jinorgbio.2024.112595. Epub 2024 May 6.

引用本文的文献

1
Corrole-protein interactions in H-NOX and HasA.
RSC Chem Biol. 2022 Mar 21;3(5):571-581. doi: 10.1039/d2cb00004k. eCollection 2022 May 11.
2
A Dual Anchoring Strategy for the Directed Evolution of Improved Artificial Transfer Hydrogenases Based on Carbonic Anhydrase.
ACS Cent Sci. 2021 Nov 24;7(11):1874-1884. doi: 10.1021/acscentsci.1c00825. Epub 2021 Nov 11.
3
Understanding and Modulating Metalloenzymes with Unnatural Amino Acids, Non-Native Metal Ions, and Non-Native Metallocofactors.
Acc Chem Res. 2019 Apr 16;52(4):935-944. doi: 10.1021/acs.accounts.9b00011. Epub 2019 Mar 26.
4
Mn-Mimochrome VIa: An Artificial Metalloenzyme With Peroxygenase Activity.
Front Chem. 2018 Dec 4;6:590. doi: 10.3389/fchem.2018.00590. eCollection 2018.
5
Design and engineering of artificial oxygen-activating metalloenzymes.
Chem Soc Rev. 2016 Sep 21;45(18):5020-54. doi: 10.1039/c5cs00923e. Epub 2016 Jun 24.
6
Protein design: toward functional metalloenzymes.
Chem Rev. 2014 Apr 9;114(7):3495-578. doi: 10.1021/cr400458x. Epub 2014 Mar 24.
7
Metalloenzyme design and engineering through strategic modifications of native protein scaffolds.
Curr Opin Chem Biol. 2014 Apr;19:67-75. doi: 10.1016/j.cbpa.2014.01.006. Epub 2014 Feb 8.
8
Designing functional metalloproteins: from structural to catalytic metal sites.
Coord Chem Rev. 2013 Sep;257(17-18):2565-2588. doi: 10.1016/j.ccr.2013.02.007.

本文引用的文献

1
Artificial transfer hydrogenases for the enantioselective reduction of cyclic imines.
Angew Chem Int Ed Engl. 2011 Mar 21;50(13):3026-9. doi: 10.1002/anie.201007820. Epub 2011 Feb 24.
2
Optimizing non-natural protein function with directed evolution.
Curr Opin Chem Biol. 2011 Apr;15(2):201-10. doi: 10.1016/j.cbpa.2010.11.020. Epub 2010 Dec 23.
3
Artificial metalloenzymes based on the biotin-avidin technology: enantioselective catalysis and beyond.
Acc Chem Res. 2011 Jan 18;44(1):47-57. doi: 10.1021/ar100099u. Epub 2010 Oct 15.
4
De novo design and molecular assembly of a transmembrane diporphyrin-binding protein complex.
J Am Chem Soc. 2010 Nov 10;132(44):15516-8. doi: 10.1021/ja107487b.
5
Protein-based hybrid catalysts--design and evolution.
Curr Opin Biotechnol. 2010 Dec;21(6):744-52. doi: 10.1016/j.copbio.2010.09.004.
6
Role of the conformational rigidity in the design of biomimetic antimicrobial compounds.
Angew Chem Int Ed Engl. 2010 Nov 2;49(45):8462-5. doi: 10.1002/anie.201003104.
7
ATP- and iron-protein-independent activation of nitrogenase catalysis by light.
J Am Chem Soc. 2010 Oct 6;132(39):13672-4. doi: 10.1021/ja1071866.
9
Metallopeptides for asymmetric dirhodium catalysis.
J Am Chem Soc. 2010 Jul 14;132(27):9289-91. doi: 10.1021/ja103747h.
10
Structure-selective modification of aromatic side chains with dirhodium metallopeptide catalysts.
J Am Chem Soc. 2010 May 19;132(19):6660-2. doi: 10.1021/ja101456c.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验