Suppr超能文献

一种贝叶斯框架,用于估计多样化率及其随时间和空间的变化。

A Bayesian framework to estimate diversification rates and their variation through time and space.

机构信息

Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany.

出版信息

BMC Evol Biol. 2011 Oct 21;11:311. doi: 10.1186/1471-2148-11-311.

Abstract

BACKGROUND

Patterns of species diversity are the result of speciation and extinction processes, and molecular phylogenetic data can provide valuable information to derive their variability through time and across clades. Bayesian Markov chain Monte Carlo methods offer a promising framework to incorporate phylogenetic uncertainty when estimating rates of diversification.

RESULTS

We introduce a new approach to estimate diversification rates in a Bayesian framework over a distribution of trees under various constant and variable rate birth-death and pure-birth models, and test it on simulated phylogenies. Furthermore, speciation and extinction rates and their posterior credibility intervals can be estimated while accounting for non-random taxon sampling. The framework is particularly suitable for hypothesis testing using Bayes factors, as we demonstrate analyzing dated phylogenies of Chondrostoma (Cyprinidae) and Lupinus (Fabaceae). In addition, we develop a model that extends the rate estimation to a meta-analysis framework in which different data sets are combined in a single analysis to detect general temporal and spatial trends in diversification.

CONCLUSIONS

Our approach provides a flexible framework for the estimation of diversification parameters and hypothesis testing while simultaneously accounting for uncertainties in the divergence times and incomplete taxon sampling.

摘要

背景

物种多样性模式是物种形成和灭绝过程的结果,分子系统发育数据可以提供有价值的信息,通过时间和分支来推导出它们的可变性。贝叶斯马尔可夫链蒙特卡罗方法为在估计多样化率时纳入系统发育不确定性提供了一个很有前途的框架。

结果

我们引入了一种新的方法,即在各种恒定和可变速率的出生-死亡和纯出生模型下,在分布的树上进行贝叶斯框架中的多样化率估计,并在模拟的系统发育树上进行了测试。此外,还可以在考虑非随机分类单元采样的情况下估计物种形成和灭绝率及其后验可信度区间。该框架特别适合使用贝叶斯因子进行假设检验,我们通过分析软骨鱼类(鲤科)和羽扇豆属(豆科)的有时间标记的系统发育来证明这一点。此外,我们还开发了一种模型,将速率估计扩展到元分析框架中,在该框架中,不同的数据集在单个分析中合并,以检测多样化的一般时间和空间趋势。

结论

我们的方法为多样化参数的估计和假设检验提供了一个灵活的框架,同时考虑了分歧时间和不完全分类单元采样的不确定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c8d/3224121/b3548e22e745/1471-2148-11-311-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验