Suppr超能文献

推断不同采样方案下的物种形成和灭绝速率。

Inferring speciation and extinction rates under different sampling schemes.

机构信息

Department of Mathematics, Stockholm University, Stockholm, Sweden.

出版信息

Mol Biol Evol. 2011 Sep;28(9):2577-89. doi: 10.1093/molbev/msr095. Epub 2011 Apr 11.

Abstract

The birth-death process is widely used in phylogenetics to model speciation and extinction. Recent studies have shown that the inferred rates are sensitive to assumptions about the sampling probability of lineages. Here, we examine the effect of the method used to sample lineages. Whereas previous studies have assumed random sampling (RS), we consider two extreme cases of biased sampling: "diversified sampling" (DS), where tips are selected to maximize diversity and "cluster sampling (CS)," where sample diversity is minimized. DS appears to be standard practice, for example, in analyses of higher taxa, whereas CS may occur under special circumstances, for example, in studies of geographically defined floras or faunas. Using both simulations and analyses of empirical data, we show that inferred rates may be heavily biased if the sampling strategy is not modeled correctly. In particular, when a diversified sample is treated as if it were a random or complete sample, the extinction rate is severely underestimated, often close to 0. Such dramatic errors may lead to serious consequences, for example, if estimated rates are used in assessing the vulnerability of threatened species to extinction. Using Bayesian model testing across 18 empirical data sets, we show that DS is commonly a better fit to the data than complete, random, or cluster sampling (CS). Inappropriate modeling of the sampling method may at least partly explain anomalous results that have previously been attributed to variation over time in birth and death rates.

摘要

诞生-灭绝过程广泛应用于系统发生学中,用于模拟物种形成和灭绝。最近的研究表明,推断出的速率对谱系抽样概率的假设敏感。在这里,我们检查采样方法的影响。虽然以前的研究假设随机采样 (RS),但我们考虑了两种有偏差采样的极端情况:“多样化采样”(DS),其中选择尖端以最大化多样性和“聚类采样 (CS)”,其中最小化样本多样性。例如,在高等分类群的分析中,DS 似乎是标准做法,而 CS 可能在特殊情况下发生,例如在地理定义的植物区系或动物区系的研究中。通过模拟和分析经验数据,我们表明,如果不正确地模拟采样策略,推断出的速率可能会受到严重的偏差影响。特别是,当将多样化的样本视为随机或完整样本时,灭绝率会被严重低估,通常接近 0。这种戏剧性的错误可能会导致严重的后果,例如,如果使用估计的速率来评估受威胁物种灭绝的脆弱性。通过在 18 个经验数据集上进行贝叶斯模型测试,我们表明 DS 通常比完整、随机或聚类采样 (CS) 更适合数据。对采样方法的不适当建模可能至少部分解释了先前归因于出生率和死亡率随时间变化的异常结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验