Suppr超能文献

果糖-1,6-二磷酸醛缩酶(II 类)是大肠杆菌中镍毒性的主要靶标。

Fructose-1,6-bisphosphate aldolase (class II) is the primary site of nickel toxicity in Escherichia coli.

机构信息

Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824-4320, USA.

出版信息

Mol Microbiol. 2011 Dec;82(5):1291-300. doi: 10.1111/j.1365-2958.2011.07891.x. Epub 2011 Nov 8.

Abstract

Nickel is toxic to all forms of life, but the mechanisms of cell damage are unknown. Indeed, environmentally relevant nickel levels (8 µM) inhibit wild-type Escherichia coli growth on glucose minimal medium. The same concentration of nickel also inhibits growth on fructose, but not succinate, lactate or glycerol; these results suggest that fructose-1,6-bisphosphate aldolase (FbaA) is a target of nickel toxicity. Cells stressed by 8 µM Ni(II) for 20 min lost 75% of their FbaA activity, demonstrating that FbaA is inactivated during nickel stress. Furthermore, overexpression of fbaA restored growth of an rcnA mutant in glucose minimal medium supplemented with 4 µM Ni(II), thus confirming that FbaA is a primary target of nickel toxicity. This class II aldolase has an active site zinc and a non-catalytic zinc nearby. Purified FbaA lost 80 % of its activity within 2 min when challenged with 8 µM Ni(II). Nickel-challenged FbaA lost 0.8 zinc and gained 0.8 nickel per inactivated monomer. FbaA mutants (D144A and E174A) affecting the non-catalytic zinc were resistant to nickel inhibition. These results define the primary site of nickel toxicity in E. coli as the class II aldolase FbaA through binding to the non-catalytic zinc site.

摘要

镍对所有形式的生命都是有毒的,但细胞损伤的机制尚不清楚。事实上,环境相关的镍水平(8 μM)抑制了野生型大肠杆菌在葡萄糖最小培养基中的生长。同样浓度的镍也抑制了果糖的生长,但不抑制琥珀酸、乳酸或甘油的生长;这些结果表明果糖-1,6-二磷酸醛缩酶(FbaA)是镍毒性的靶标。用 8 μM Ni(II)处理 20 分钟的细胞失去了 75%的 FbaA 活性,表明 FbaA 在镍胁迫下失活。此外,fbaA 的过表达恢复了 rcnA 突变体在葡萄糖最小培养基中的生长,该培养基中补充了 4 μM Ni(II),从而证实 FbaA 是镍毒性的主要靶标。这种 II 类醛缩酶具有一个活性部位锌和一个附近的非催化锌。当用 8 μM Ni(II)挑战时,纯化的 FbaA 在 2 分钟内失去了 80%的活性。受镍挑战的 FbaA 每个失活单体失去 0.8 个锌和获得 0.8 个镍。影响非催化锌的 FbaA 突变体(D144A 和 E174A)对镍抑制具有抗性。这些结果通过结合非催化锌位点,将大肠杆菌中镍毒性的主要靶标定义为 II 类醛缩酶 FbaA。

相似文献

引用本文的文献

3
Soft-metal(loid)s induce protein aggregation in .软金属(类金属)在……中诱导蛋白质聚集。
Front Microbiol. 2023 Nov 22;14:1281058. doi: 10.3389/fmicb.2023.1281058. eCollection 2023.
10
Protein metalation in biology.生物学中的蛋白质金属化。
Curr Opin Chem Biol. 2022 Feb;66:102095. doi: 10.1016/j.cbpa.2021.102095. Epub 2021 Nov 8.

本文引用的文献

1
Mechanisms of nickel toxicity in microorganisms.微生物中镍毒性的作用机制。
Metallomics. 2011 Nov;3(11):1153-62. doi: 10.1039/c1mt00063b. Epub 2011 Jul 28.
2
Nickel: an overview of uptake, essentiality and toxicity in plants.镍:植物吸收、必需性和毒性概述。
Bull Environ Contam Toxicol. 2011 Jan;86(1):1-17. doi: 10.1007/s00128-010-0171-1. Epub 2010 Dec 19.
4
Microbial nickel proteins.微生物镍蛋白。
Nat Prod Rep. 2010 May;27(5):681-94. doi: 10.1039/b906688h. Epub 2010 Mar 5.
5
Nickel homeostasis and nickel regulation: an overview.镍稳态与镍调节:概述
Chem Rev. 2009 Oct;109(10):4617-43. doi: 10.1021/cr900010n.
9
Glutathione and transition-metal homeostasis in Escherichia coli.大肠杆菌中的谷胱甘肽与过渡金属稳态
J Bacteriol. 2008 Aug;190(15):5431-8. doi: 10.1128/JB.00271-08. Epub 2008 Jun 6.
10
Ni(II) and Co(II) sensing by Escherichia coli RcnR.大肠杆菌RcnR对镍(II)和钴(II)的感应
J Am Chem Soc. 2008 Jun 18;130(24):7592-606. doi: 10.1021/ja710067d. Epub 2008 May 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验