Suppr超能文献

胼胝体缺失情况下双侧静息状态网络完整。

Intact bilateral resting-state networks in the absence of the corpus callosum.

机构信息

Division of Biology, California Institute of Technology, Pasadena, California 91125, USA.

出版信息

J Neurosci. 2011 Oct 19;31(42):15154-62. doi: 10.1523/JNEUROSCI.1453-11.2011.

Abstract

Temporal correlations between different brain regions in the resting-state BOLD signal are thought to reflect intrinsic functional brain connectivity (Biswal et al., 1995; Greicius et al., 2003; Fox et al., 2007). The functional networks identified are typically bilaterally distributed across the cerebral hemispheres, show similarity to known white matter connections (Greicius et al., 2009), and are seen even in anesthetized monkeys (Vincent et al., 2007). Yet it remains unclear how they arise. Here we tested two distinct possibilities: (1) functional networks arise largely from structural connectivity constraints, and generally require direct interactions between functionally coupled regions mediated by white-matter tracts; and (2) functional networks emerge flexibly with the development of normal cognition and behavior and can be realized in multiple structural architectures. We conducted resting-state fMRI in eight adult humans with complete agenesis of the corpus callosum (AgCC) and normal intelligence, and compared their data to those from eight healthy matched controls. We performed three main analyses: anatomical region-of-interest-based correlations to test homotopic functional connectivity, independent component analysis (ICA) to reveal functional networks with a data-driven approach, and ICA-based interhemispheric correlation analysis. Both groups showed equivalently strong homotopic BOLD correlation. Surprisingly, almost all of the group-level independent components identified in controls were observed in AgCC and were predominantly bilaterally symmetric. The results argue that a normal complement of resting-state networks and intact functional coupling between the hemispheres can emerge in the absence of the corpus callosum, favoring the second over the first possibility listed above.

摘要

静息态功能磁共振成像(rs-fMRI)研究表明,不同脑区之间的时间相关性反映了内在的功能连接(Biswal 等人,1995;Greicius 等人,2003;Fox 等人,2007)。所识别的功能网络通常是双侧分布在大脑半球上,与已知的白质连接相似(Greicius 等人,2009),甚至在麻醉猴子中也可以看到(Vincent 等人,2007)。然而,它们是如何产生的仍然不清楚。在这里,我们测试了两种不同的可能性:(1)功能网络主要由结构连接的约束产生,通常需要通过白质束介导的功能耦合区域之间的直接相互作用;(2)功能网络随着正常认知和行为的发展而灵活出现,并且可以在多种结构架构中实现。我们对 8 名具有胼胝体完全发育不全(AgCC)和正常智力的成年人类进行了静息态 fMRI 研究,并将他们的数据与 8 名健康匹配的对照组进行了比较。我们进行了三项主要分析:基于解剖学感兴趣区域的相关性分析以测试同型功能连接,独立成分分析(ICA)以揭示数据驱动方法的功能网络,以及基于 ICA 的大脑半球间相关性分析。两组都表现出同样强的同型 BOLD 相关性。令人惊讶的是,在对照组中确定的几乎所有组水平的独立成分都在 AgCC 中观察到,并且主要是双侧对称的。结果表明,在没有胼胝体的情况下,正常的静息状态网络和半球间的功能连接可以出现,这有利于第二种可能性,而不是上述第一种可能性。

相似文献

1
Intact bilateral resting-state networks in the absence of the corpus callosum.
J Neurosci. 2011 Oct 19;31(42):15154-62. doi: 10.1523/JNEUROSCI.1453-11.2011.
2
Resting-state networks and the functional connectome of the human brain in agenesis of the corpus callosum.
Brain Connect. 2013;3(6):547-62. doi: 10.1089/brain.2013.0175. Epub 2013 Nov 16.
4
Structural connectivity analysis reveals abnormal brain connections in agenesis of the corpus callosum in children.
Eur Radiol. 2015 May;25(5):1471-8. doi: 10.1007/s00330-014-3541-y. Epub 2014 Dec 6.
5
Large-scale functional network dynamics in human callosal agenesis: Increased subcortical involvement and preserved laterality.
Neuroimage. 2021 Nov;243:118471. doi: 10.1016/j.neuroimage.2021.118471. Epub 2021 Aug 27.
7
Neural correlates of working memory in children and adolescents with agenesis of the corpus callosum: An fMRI study.
Neuropsychologia. 2017 Nov;106:71-82. doi: 10.1016/j.neuropsychologia.2017.09.008. Epub 2017 Sep 9.
9
Increased cognitive complexity reveals abnormal brain network activity in individuals with corpus callosum dysgenesis.
Neuroimage Clin. 2019;21:101595. doi: 10.1016/j.nicl.2018.11.005. Epub 2018 Nov 14.
10
Functional networks in the anesthetized rat brain revealed by independent component analysis of resting-state FMRI.
J Neurophysiol. 2010 Jun;103(6):3398-406. doi: 10.1152/jn.00141.2010. Epub 2010 Apr 21.

引用本文的文献

1
Interhemispheric resting-state functional connectivity correlates with spontaneous neural interactions.
Proc Natl Acad Sci U S A. 2025 Aug 26;122(34):e2505294122. doi: 10.1073/pnas.2505294122. Epub 2025 Aug 18.
2
The corpus callosum and creativity revisited.
Front Hum Neurosci. 2024 Sep 12;18:1443970. doi: 10.3389/fnhum.2024.1443970. eCollection 2024.
3
Structure-function coupling in highly sampled individual brains.
Cereb Cortex. 2024 Sep 3;34(9). doi: 10.1093/cercor/bhae361.
4
Resting-State Functional Connectivity of the Amygdala in Autism: A Preregistered Large-Scale Study.
Am J Psychiatry. 2024 Dec 1;181(12):1076-1085. doi: 10.1176/appi.ajp.20230249. Epub 2024 Aug 29.
5
Structure-function coupling in macroscale human brain networks.
Nat Rev Neurosci. 2024 Oct;25(10):688-704. doi: 10.1038/s41583-024-00846-6. Epub 2024 Aug 5.
6
Brain plasticity following corpus callosum agenesis or loss: a review of the Probst bundles.
Front Neuroanat. 2023 Nov 6;17:1296779. doi: 10.3389/fnana.2023.1296779. eCollection 2023.
8
Identifying the distinct spectral dynamics of laminar-specific interhemispheric connectivity with bilateral line-scanning fMRI.
J Cereb Blood Flow Metab. 2023 Jul;43(7):1115-1129. doi: 10.1177/0271678X231158434. Epub 2023 Feb 21.
9
E.L., a modern-day Phineas Gage: Revisiting frontal lobe injury.
Lancet Reg Health Am. 2022 Aug 11;14:100340. doi: 10.1016/j.lana.2022.100340. eCollection 2022 Oct.
10
Integration of structural brain networks is related to openness to experience: A diffusion MRI study with CSD-based tractography.
Front Neurosci. 2022 Dec 8;16:1040799. doi: 10.3389/fnins.2022.1040799. eCollection 2022.

本文引用的文献

2
On the relationship between seed-based and ICA-based measures of functional connectivity.
Magn Reson Med. 2011 Sep;66(3):644-57. doi: 10.1002/mrm.22818. Epub 2011 Mar 10.
4
Emergence of resting state networks in the preterm human brain.
Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):20015-20. doi: 10.1073/pnas.1007921107. Epub 2010 Nov 1.
5
White matter maturation reshapes structural connectivity in the late developing human brain.
Proc Natl Acad Sci U S A. 2010 Nov 2;107(44):19067-72. doi: 10.1073/pnas.1009073107. Epub 2010 Oct 18.
6
Decreased interhemispheric functional connectivity in autism.
Cereb Cortex. 2011 May;21(5):1134-46. doi: 10.1093/cercor/bhq190. Epub 2010 Oct 12.
7
The development of the corpus callosum in the healthy human brain.
J Neurosci. 2010 Aug 18;30(33):10985-90. doi: 10.1523/JNEUROSCI.5122-09.2010.
8
Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature.
Neuroimage. 2010 Oct 15;53(1):1-15. doi: 10.1016/j.neuroimage.2010.06.010. Epub 2010 Jun 12.
9
The functional architecture of the infant brain as revealed by resting-state fMRI.
Cereb Cortex. 2011 Jan;21(1):145-54. doi: 10.1093/cercor/bhq071. Epub 2010 Apr 26.
10
Toward discovery science of human brain function.
Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4734-9. doi: 10.1073/pnas.0911855107. Epub 2010 Feb 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验