Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA.
Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
J Cereb Blood Flow Metab. 2023 Jul;43(7):1115-1129. doi: 10.1177/0271678X231158434. Epub 2023 Feb 21.
Despite extensive efforts to identify interhemispheric functional connectivity (FC) with resting-state (rs-) fMRI, correlated low-frequency rs-fMRI signal fluctuation across homotopic cortices originates from multiple sources. It remains challenging to differentiate circuit-specific FC from global regulation. Here, we developed a bilateral line-scanning fMRI method to detect laminar-specific rs-fMRI signals from homologous forepaw somatosensory cortices with high spatial and temporal resolution in rat brains. Based on spectral coherence analysis, two distinct bilateral fluctuation spectral features were identified: ultra-slow fluctuation (<0.04 Hz) across all cortical laminae versus Layer (L) 2/3-specific evoked BOLD at 0.05 Hz based on 4 s on/16 s off block design and resting-state fluctuations at 0.08-0.1 Hz. Based on the measurements of evoked BOLD signal at corpus callosum (CC), this L2/3-specific 0.05 Hz signal is likely associated with neuronal circuit-specific activity driven by the callosal projection, which dampened ultra-slow oscillation less than 0.04 Hz. Also, the rs-fMRI power variability clustering analysis showed that the appearance of L2/3-specific 0.08-0.1 Hz signal fluctuation is independent of the ultra-slow oscillation across different trials. Thus, distinct laminar-specific bilateral FC patterns at different frequency ranges can be identified by the bilateral line-scanning fMRI method.
尽管人们已经做出了广泛的努力来识别静息态功能磁共振成像(rs-fMRI)的半球间功能连接(FC),但同源皮质之间相关的低频 rs-fMRI 信号波动来自多个来源。区分特定于回路的 FC 与全局调节仍然具有挑战性。在这里,我们开发了一种双侧线扫描 fMRI 方法,以在大鼠大脑中以高空间和时间分辨率检测同源前爪体感皮层的分层特异性 rs-fMRI 信号。基于频谱相干性分析,确定了两个不同的双侧波动频谱特征:全皮层层(L)之间的超慢波动(<0.04 Hz)与基于 4 s 开/16 s 关块设计和 0.08-0.1 Hz 的静息状态波动的 L2/3 特异性诱发 BOLD。基于胼胝体(CC)诱发 BOLD 信号的测量,这种 L2/3 特异性的 0.05 Hz 信号可能与由胼胝体投射驱动的神经元回路特定活动有关,其对超慢振荡的抑制作用小于 0.04 Hz。此外,rs-fMRI 功率变异性聚类分析表明,L2/3 特异性 0.08-0.1 Hz 信号波动的出现与不同试验之间的超慢振荡无关。因此,通过双侧线扫描 fMRI 方法可以识别不同频率范围内的不同分层特异性双侧 FC 模式。