Comisión Nacional de Energía Atómica and Consejo Nacional e Investigaciones Científicas y Técnicas, Centro Atómico Bariloche and Instituto Balseiro Río Negro, Argentina.
Front Comput Neurosci. 2011 Oct 12;5:41. doi: 10.3389/fncom.2011.00041. eCollection 2011.
Balanced states in large networks are a usual hypothesis for explaining the variability of neural activity in cortical systems. In this regime the statistics of the inputs is characterized by static and dynamic fluctuations. The dynamic fluctuations have a Gaussian distribution. Such statistics allows to use reverse correlation methods, by recording synaptic inputs and the spike trains of ongoing spontaneous activity without any additional input. By using this method, properties of the single neuron dynamics that are masked by the balanced state can be quantified. To show the feasibility of this approach we apply it to large networks of conductance based neurons. The networks are classified as Type I or Type II according to the bifurcations which neurons of the different populations undergo near the firing onset. We also analyze mixed networks, in which each population has a mixture of different neuronal types. We determine under which conditions the intrinsic noise generated by the network can be used to apply reverse correlation methods. We find that under realistic conditions we can ascertain with low error the types of neurons present in the network. We also find that data from neurons with similar firing rates can be combined to perform covariance analysis. We compare the results of these methods (that do not requite any external input) to the standard procedure (that requires the injection of Gaussian noise into a single neuron). We find a good agreement between the two procedures.
在大网络中,平衡状态是解释皮质系统中神经活动可变性的常用假设。在这种状态下,输入的统计数据具有静态和动态波动。动态波动具有高斯分布。这种统计数据允许使用反向相关方法,通过记录突触输入和正在进行的自发活动的尖峰序列,而无需任何额外的输入。通过使用这种方法,可以量化被平衡状态掩盖的单个神经元动力学的特性。为了展示这种方法的可行性,我们将其应用于基于电导的大型神经元网络。根据不同群体的神经元在发射开始附近经历的分岔,将网络分类为 I 型或 II 型。我们还分析了混合网络,其中每个群体都有不同神经元类型的混合物。我们确定了在什么条件下,网络产生的固有噪声可用于应用反向相关方法。我们发现,在现实条件下,我们可以低错误地确定网络中存在的神经元类型。我们还发现,具有相似发放率的神经元的数据可以组合在一起进行协方差分析。我们将这些方法(不需要任何外部输入)的结果与标准程序(需要将高斯噪声注入单个神经元)进行比较。我们发现这两种程序之间有很好的一致性。