Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA 94720, USA.
Ecol Lett. 2012 Jan;15(1):17-23. doi: 10.1111/j.1461-0248.2011.01702.x. Epub 2011 Oct 21.
Density dependence in population growth rates is of immense importance to ecological theory and application, but is difficult to estimate. The Global Population Dynamics Database (GPDD), one of the largest collections of population time series available, has been extensively used to study cross-taxa patterns in density dependence. A major difficulty with assessing density dependence from time series is that uncertainty in population abundance estimates can cause strong bias in both tests and estimates of strength. We analyse 627 data sets in the GPDD using Gompertz population models and account for uncertainty via the Kalman filter. Results suggest that at least 45% of the time series display density dependence, but that it is weak and difficult to detect for a large fraction. When uncertainty is ignored, magnitude of and evidence for density dependence is strong, illustrating that uncertainty in abundance estimates qualitatively changes conclusions about density dependence drawn from the GPDD.
种群增长率的密度依赖性对生态理论和应用具有重要意义,但很难估计。全球人口动态数据库(GPDD)是可用的最大的种群时间序列集合之一,已被广泛用于研究密度依赖性的跨分类群模式。从时间序列评估密度依赖性的一个主要困难是,种群丰度估计的不确定性会导致测试和强度估计中出现强烈的偏差。我们使用 Gompertz 种群模型分析了 GPDD 中的 627 个数据集,并通过卡尔曼滤波器来解释不确定性。结果表明,至少有 45%的时间序列显示出密度依赖性,但对于很大一部分时间序列来说,密度依赖性是微弱的,难以检测到。当忽略不确定性时,密度依赖性的大小和证据就很强,这表明丰度估计的不确定性从根本上改变了从 GPDD 得出的关于密度依赖性的结论。