Healthcare Information Management, Philips Research, High Tech Campus 34, 5656 AA Eindhoven, The Netherlands.
J Biomed Inform. 2012 Feb;45(1):107-19. doi: 10.1016/j.jbi.2011.09.004. Epub 2011 Oct 11.
Autocompletion supports human-computer interaction in software applications that let users enter textual data. We will be inspired by the use case in which medical professionals enter ontology concepts, catering the ongoing demand for structured and standardized data in medicine.
Goal is to give an algorithmic analysis of one particular autocompletion algorithm, called multi-prefix matching algorithm, which suggests terms whose words' prefixes contain all words in the string typed by the user, e.g., in this sense, opt ner me matches optic nerve meningioma. Second we aim to investigate how well it supports users entering concepts from a large and comprehensive medical vocabulary (snomed ct).
We give a concise description of the multi-prefix algorithm, and sketch how it can be optimized to meet required response time. Performance will be compared to a baseline algorithm, which gives suggestions that extend the string typed by the user to the right, e.g. optic nerve m gives optic nerve meningioma, but opt ner me does not. We conduct a user experiment in which 12 participants are invited to complete 40 snomed ct terms with the baseline algorithm and another set of 40 snomed ct terms with the multi-prefix algorithm.
Our results show that users need significantly fewer keystrokes when supported by the multi-prefix algorithm than when supported by the baseline algorithm.
The proposed algorithm is a competitive candidate for searching and retrieving terms from a large medical ontology.
自动补全支持软件应用程序中的人机交互,使用户能够输入文本数据。我们将受到医疗专业人员输入本体概念的用例的启发,满足医学领域对结构化和标准化数据的持续需求。
对一种特定的自动补全算法(称为多前缀匹配算法)进行算法分析,该算法根据用户输入的字符串的所有单词的前缀来建议术语,例如,在这种意义上,opt ner me 匹配视神经脑膜瘤。其次,我们旨在研究它如何支持用户从大型综合医学词汇(SNOMED CT)中输入概念。
我们对多前缀算法进行了简洁的描述,并概述了如何对其进行优化以满足所需的响应时间。将性能与基线算法进行比较,基线算法会根据用户输入的字符串向右扩展建议,例如,optic nerve m 给出了视神经脑膜瘤,但 opt ner me 没有。我们进行了一项用户实验,邀请 12 名参与者使用基线算法完成 40 个 SNOMED CT 术语,使用多前缀算法完成另一组 40 个 SNOMED CT 术语。
我们的结果表明,与基线算法相比,用户在使用多前缀算法时所需的击键次数明显减少。
所提出的算法是从大型医学本体中搜索和检索术语的有竞争力的候选算法。