Suppr超能文献

Ontoserver:一个联合术语服务器。

Ontoserver: a syndicated terminology server.

作者信息

Metke-Jimenez Alejandro, Steel Jim, Hansen David, Lawley Michael

机构信息

The Australian e-Health Research Centre, CSIRO, Level 5 UQ Health Sciences Building, Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia.

出版信息

J Biomed Semantics. 2018 Sep 17;9(1):24. doi: 10.1186/s13326-018-0191-z.

Abstract

BACKGROUND

Even though several high-quality clinical terminologies, such as SNOMED CT and LOINC, are readily available, uptake in clinical systems has been slow and many continue to capture information in plain text or using custom terminologies. This paper discusses some of the challenges behind this slow uptake and describes a clinical terminology server implementation that aims to overcome these obstacles and contribute to the widespread adoption of standardised clinical terminologies.

RESULTS

Ontoserver is a clinical terminology server based on the Fast Health Interoperability Resources (FHIR) standard. Some of its key features include: out-of-the-box support for SNOMED CT, LOINC and OWL ontologies, such as the Human Phenotype Ontology (HPO); a fast, prefix-based search algorithm to ensure users can easily find content and are not discouraged from entering coded data; a syndication mechanism to facilitate keeping terminologies up to date; and a full implementation of SNOMED CT's Expression Constraint Language (ECL), which enables sophisticated data analytics.

CONCLUSIONS

Ontoserver has been designed to overcome some of the challenges that have hindered adoption of standardised clinical terminologies and is used in several organisations throughout Australia. Increasing adoption is an important goal because it will help improve the quality of clinical data, which can lead to better clinical decision support and ultimately to better patient outcomes.

摘要

背景

尽管有几种高质量的临床术语集可供使用,如SNOMED CT和LOINC,但临床系统对它们的采用速度一直很慢,许多机构仍在使用纯文本或自定义术语来记录信息。本文讨论了这种缓慢采用背后的一些挑战,并描述了一个临床术语服务器的实现,旨在克服这些障碍,促进标准化临床术语的广泛采用。

结果

Ontoserver是一个基于快速健康互操作性资源(FHIR)标准的临床术语服务器。它的一些关键特性包括:开箱即用支持SNOMED CT、LOINC和OWL本体,如人类表型本体(HPO);一种快速的基于前缀的搜索算法,以确保用户能够轻松找到内容,且不会因输入编码数据而感到气馁;一种促进术语更新的联合机制;以及对SNOMED CT的表达约束语言(ECL)的全面实现,这使得复杂的数据分析成为可能。

结论

Ontoserver旨在克服一些阻碍标准化临床术语采用的挑战,已在澳大利亚的多个机构中使用。提高其采用率是一个重要目标,因为这将有助于提高临床数据质量,从而带来更好的临床决策支持,并最终改善患者预后。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验