Department of Psychology, University of Denver, Denver, CO 80208, USA.
J Abnorm Psychol. 2012 Feb;121(1):212-24. doi: 10.1037/a0025823. Epub 2011 Oct 24.
The overall goals of this study were to test single versus multiple cognitive deficit models of dyslexia (reading disability) at the level of individual cases and to determine the clinical utility of these models for prediction and diagnosis of dyslexia. To accomplish these goals, we tested five cognitive models of dyslexia--two single-deficit models, two multiple-deficit models, and one hybrid model--in two large population-based samples, one cross-sectional (Colorado Learning Disability Research Center) and one longitudinal (International longitudinal Twin Study). The cognitive deficits included in these cognitive models were in phonological awareness, language skill, and processing speed and/or naming speed. To determine whether an individual case fit one of these models, we used two methods: 1) the presence or absence of the predicted cognitive deficits, and 2) whether the individual's level of reading skill best fit the regression equation with the relevant cognitive predictors (i.e., whether their reading skill was proportional to those cognitive predictors.) We found that roughly equal proportions of cases met both tests of model fit for the multiple deficit models (30-36%) and single deficit models (24-28%); hence, the hybrid model provided the best overall fit to the data. The remaining roughly 40% of cases in each sample lacked the deficit or deficits that corresponded with their best-fitting regression model. We discuss the clinical implications of these results for both diagnosis of school-age children and preschool prediction of children at risk for dyslexia.
本研究的总体目标是在个体病例水平上测试阅读障碍(阅读障碍)的单一与多种认知缺陷模型,并确定这些模型对阅读障碍的预测和诊断的临床实用性。为了实现这些目标,我们在两个大型基于人群的样本中测试了五种阅读障碍认知模型——两个单一缺陷模型、两个多个缺陷模型和一个混合模型,一个是横断面(科罗拉多学习障碍研究中心),一个是纵向(国际纵向双胞胎研究)。这些认知模型中包含的认知缺陷包括语音意识、语言技能、处理速度和/或命名速度。为了确定个体病例是否符合这些模型之一,我们使用了两种方法:1)是否存在预测的认知缺陷,以及 2)个体的阅读技能水平是否最符合相关认知预测因子的回归方程(即,他们的阅读技能是否与这些认知预测因子成比例)。我们发现,符合多个缺陷模型(30-36%)和单一缺陷模型(24-28%)的病例大致比例相等;因此,混合模型为数据提供了最佳的总体拟合。在每个样本中,大约 40%的剩余病例缺乏与他们最佳拟合回归模型相对应的缺陷或缺陷。我们讨论了这些结果对学龄儿童的诊断和对阅读障碍风险儿童的学前预测的临床意义。