Suppr超能文献

在基于移动图像的膳食评估中使用特定食物形状模板进行体积估计

Volume Estimation Using Food Specific Shape Templates in Mobile Image-Based Dietary Assessment.

作者信息

Chae Junghoon, Woo Insoo, Kim Sungye, Maciejewski Ross, Zhu Fengging, Delp Edward J, Boushey Carol J, Ebert David S

机构信息

School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana USA.

出版信息

Proc SPIE Int Soc Opt Eng. 2011 Feb 7;7873:78730K. doi: 10.1117/12.876669.

Abstract

As obesity concerns mount, dietary assessment methods for prevention and intervention are being developed. These methods include recording, cataloging and analyzing daily dietary records to monitor energy and nutrient intakes. Given the ubiquity of mobile devices with built-in cameras, one possible means of improving dietary assessment is through photographing foods and inputting these images into a system that can determine the nutrient content of foods in the images. One of the critical issues in such the image-based dietary assessment tool is the accurate and consistent estimation of food portion sizes. The objective of our study is to automatically estimate food volumes through the use of food specific shape templates. In our system, users capture food images using a mobile phone camera. Based on information (i.e., food name and code) determined through food segmentation and classification of the food images, our system choose a particular food template shape corresponding to each segmented food. Finally, our system reconstructs the three-dimensional properties of the food shape from a single image by extracting feature points in order to size the food shape template. By employing this template-based approach, our system automatically estimates food portion size, providing a consistent method for estimation food volume.

摘要

随着对肥胖问题的担忧日益增加,用于预防和干预的饮食评估方法正在不断发展。这些方法包括记录、编目和分析每日饮食记录,以监测能量和营养摄入。鉴于内置摄像头的移动设备无处不在,一种改进饮食评估的可能方法是拍摄食物并将这些图像输入一个能够确定图像中食物营养成分的系统。这种基于图像的饮食评估工具的关键问题之一是准确且一致地估计食物份量大小。我们研究的目的是通过使用特定食物形状模板来自动估计食物体积。在我们的系统中,用户使用手机摄像头拍摄食物图像。基于通过对食物图像进行分割和分类所确定的信息(即食物名称和代码),我们的系统为每个分割出的食物选择一个特定的食物模板形状。最后,我们的系统通过提取特征点从单张图像重建食物形状的三维属性,以便对食物形状模板进行尺寸测量。通过采用这种基于模板的方法,我们的系统自动估计食物份量大小,为估计食物体积提供了一种一致的方法。

相似文献

1
Volume Estimation Using Food Specific Shape Templates in Mobile Image-Based Dietary Assessment.
Proc SPIE Int Soc Opt Eng. 2011 Feb 7;7873:78730K. doi: 10.1117/12.876669.
2
Automatic portion estimation and visual refinement in mobile dietary assessment.
Proc SPIE Int Soc Opt Eng. 2010 Jan 1;7533. doi: 10.1117/12.849051.
3
Merging dietary assessment with the adolescent lifestyle.
J Hum Nutr Diet. 2014 Jan;27 Suppl 1(0 1):82-8. doi: 10.1111/jhn.12071. Epub 2013 Mar 13.
4
FOOD IMAGE ANALYSIS: SEGMENTATION, IDENTIFICATION AND WEIGHT ESTIMATION.
Proc (IEEE Int Conf Multimed Expo). 2013 Jul;2013. doi: 10.1109/ICME.2013.6607548. Epub 2013 Sep 26.
5
MODEL-BASED FOOD VOLUME ESTIMATION USING 3D POSE.
Proc Int Conf Image Proc. 2013 Sep;2013:2534-2538. doi: 10.1109/ICIP.2013.6738522. Epub 2014 Feb 13.
6
Segmentation Assisted Food Classification for Dietary Assessment.
Proc SPIE Int Soc Opt Eng. 2011 Jan 24;7873:78730B. doi: 10.1117/12.877036.
7
New mobile methods for dietary assessment: review of image-assisted and image-based dietary assessment methods.
Proc Nutr Soc. 2017 Aug;76(3):283-294. doi: 10.1017/S0029665116002913. Epub 2016 Dec 12.

引用本文的文献

1
Advancements in Using AI for Dietary Assessment Based on Food Images: Scoping Review.
J Med Internet Res. 2024 Nov 15;26:e51432. doi: 10.2196/51432.
3
Estimating Amount of Food in a Circular Dining Bowl from a Single Image.
Madima 23 (2023). 2023 Oct;2023:1-9. doi: 10.1145/3607828.3617789. Epub 2023 Oct 29.
5
Vision-Based Methods for Food and Fluid Intake Monitoring: A Literature Review.
Sensors (Basel). 2023 Jul 4;23(13):6137. doi: 10.3390/s23136137.
7
Learning metric volume estimation of fruits and vegetables from short monocular video sequences.
Heliyon. 2023 Mar 21;9(4):e14722. doi: 10.1016/j.heliyon.2023.e14722. eCollection 2023 Apr.
8
A Novel Approach to Dining Bowl Reconstruction for Image-Based Food Volume Estimation.
Sensors (Basel). 2022 Feb 15;22(4):1493. doi: 10.3390/s22041493.

本文引用的文献

1
Automatic portion estimation and visual refinement in mobile dietary assessment.
Proc SPIE Int Soc Opt Eng. 2010 Jan 1;7533. doi: 10.1117/12.849051.
2
Technology-Assisted Dietary Assessment.
Proc SPIE Int Soc Opt Eng. 2008 Mar 20;6814:681411. doi: 10.1117/12.778616.
3
Hierarchical shape description via the multiresolution symmetric axis transform.
IEEE Trans Pattern Anal Mach Intell. 1987 Apr;9(4):505-11. doi: 10.1109/tpami.1987.4767938.
4
Evaluation of a digital method to assess evening meal intake in a free-living adult population.
Food Nutr Res. 2010 Nov 12;54:5311. doi: 10.3402/fnr.v54i0.5311.
5
A review of the use of information and communication technologies for dietary assessment.
Br J Nutr. 2009 Jul;101 Suppl 2:S102-12. doi: 10.1017/S0007114509990638.
6
Use of technology in children's dietary assessment.
Eur J Clin Nutr. 2009 Feb;63 Suppl 1(Suppl 1):S50-7. doi: 10.1038/ejcn.2008.65.
7
Localizing region-based active contours.
IEEE Trans Image Process. 2008 Nov;17(11):2029-39. doi: 10.1109/TIP.2008.2004611.
8
A new algorithm for image noise reduction using mathematical morphology.
IEEE Trans Image Process. 1995;4(5):554-68. doi: 10.1109/83.382491.
9
Active contours without edges.
IEEE Trans Image Process. 2001;10(2):266-77. doi: 10.1109/83.902291.
10
A Bayesian, exemplar-based approach to hierarchical shape matching.
IEEE Trans Pattern Anal Mach Intell. 2007 Aug;29(8):1408-21. doi: 10.1109/TPAMI.2007.1062.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验