Geer Ana M, Navarro Janeth, Alamán-Valtierra Pablo, Coles Nathan T, Kays Deborah L, Tejel Cristina
Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Departamento de Química Inorgánica, Facultad de Ciencias, CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain.
School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
ACS Catal. 2023 Apr 28;13(10):6610-6618. doi: 10.1021/acscatal.3c00764. eCollection 2023 May 19.
Enhancing catalytic activity through synergic effects is a current challenge in homogeneous catalysis. In addition to the well-established metal-metal and metal-ligand cooperation, we showcase here an example of self- by the substrate in controlling the catalytic activity of the two-coordinate iron complex [Fe(2,6-XylCH)] (, Xyl = 2,6-MeCH). This behavior was observed for aryl acetylenes in their regioselective cyclotrimerization to 1,2,4-(aryl)-benzenes. Two kinetically distinct regimes are observed dependent upon the substrate-to-catalyst ratio ([RC≡CH]/[]), referred to as the ([RC≡CH]/[] < 40) and ([RC≡CH]/[] > 40) regimes. Both showed sigmoidal kinetic response, with positive Hill indices of 1.85 and 3.62, respectively, and nonlinear Lineweaver-Burk replots with an upward curvature, which supports positive substrate cooperativity. Moreover, two alkyne molecules participate in the regime, whereas up to four are involved in the regime. The second-order rate dependence on indicates that binuclear complexes are the catalytically competent species in both regimes, with that in the one being 6 times faster than that involved in the one. Moreover, Eyring plot analyses revealed two different catalytic cycles, with a rate-determining step more endergonic in the regime than in the one, but with a more ordered transition state in the regime than in the one.
通过协同效应提高催化活性是均相催化领域当前面临的一项挑战。除了已被充分证实的金属-金属和金属-配体协同作用外,我们在此展示了一个底物自我调控双配位铁配合物[Fe(2,6-XylCH)](Xyl = 2,6-MeCH)催化活性的例子。在芳基乙炔区域选择性环三聚生成1,2,4-(芳基)苯的反应中观察到了这种行为。根据底物与催化剂的比例([RC≡CH]/[]),观察到两种动力学上不同的反应模式,分别称为低底物浓度模式([RC≡CH]/[] < 40)和高底物浓度模式([RC≡CH]/[] > 40)。两者均呈现S形动力学响应,希尔系数分别为1.85和3.62,且Lineweaver-Burk重图呈向上弯曲的非线性,这支持了底物正协同效应。此外,在低底物浓度模式下有两个炔烃分子参与反应,而在高底物浓度模式下多达四个炔烃分子参与反应。对的二级速率依赖性表明双核配合物在两种反应模式中都是催化活性物种,其中高底物浓度模式下的反应速率比低底物浓度模式下的快6倍。此外,艾林方程分析揭示了两个不同的催化循环,低底物浓度模式下的速率决定步骤比高底物浓度模式下的更具吸能性,但高底物浓度模式下的过渡态比低底物浓度模式下的更有序。