van Schalkwijk Daniël B, van Ommen Ben, Freidig Andreas P, van der Greef Jan, de Graaf Albert A
TNO Quality of Life, Business Unit Biosciences, Zeist and Leiden, the Netherlands.
J Clin Bioinforma. 2011 Oct 26;1(1):29. doi: 10.1186/2043-9113-1-29.
Dyslipidemia is an important risk factor for cardiovascular disease and type II diabetes. Lipoprotein diagnostics, such as LDL cholesterol and HDL cholesterol, help to diagnose these diseases. Lipoprotein profile measurements could improve lipoprotein diagnostics, but interpretational complexity has limited their clinical application to date. We have previously developed a computational model called Particle Profiler to interpret lipoprotein profiles. In the current study we further developed and calibrated Particle Profiler using subjects with specific genetic conditions. We subsequently performed technical validation and worked at an initial indication of clinical usefulness starting from available data on lipoprotein concentrations and metabolic fluxes. Since the model outcomes cannot be measured directly, the only available technical validation was corroboration. For an initial indication of clinical usefulness, pooled lipoprotein metabolic flux data was available from subjects with various types of dyslipidemia. Therefore we investigated how well lipoprotein metabolic ratios derived from Particle Profiler distinguished reported dyslipidemic from normolipidemic subjects.
We found that the model could fit a range of normolipidemic and dyslipidemic subjects from fifteen out of sixteen studies equally well, with an average 8.8% ± 5.0% fit error; only one study showed a larger fit error. As initial indication of clinical usefulness, we showed that one diagnostic marker based on VLDL metabolic ratios better distinguished dyslipidemic from normolipidemic subjects than triglycerides, HDL cholesterol, or LDL cholesterol. The VLDL metabolic ratios outperformed each of the classical diagnostics separately; they also added power of distinction when included in a multivariate logistic regression model on top of the classical diagnostics.
In this study we further developed, calibrated, and corroborated the Particle Profiler computational model using pooled lipoprotein metabolic flux data. From pooled lipoprotein metabolic flux data on dyslipidemic patients, we derived VLDL metabolic ratios that better distinguished normolipidemic from dyslipidemic subjects than standard diagnostics, including HDL cholesterol, triglycerides and LDL cholesterol. Since dyslipidemias are closely linked to cardiovascular disease and diabetes type II development, lipoprotein metabolic ratios are candidate risk markers for these diseases. These ratios can in principle be obtained by applying Particle Profiler to a single lipoprotein profile measurement, which makes clinical application feasible.
血脂异常是心血管疾病和II型糖尿病的重要危险因素。脂蛋白诊断指标,如低密度脂蛋白胆固醇和高密度脂蛋白胆固醇,有助于诊断这些疾病。脂蛋白谱测量可改善脂蛋白诊断,但解释的复杂性限制了其迄今为止的临床应用。我们之前开发了一种名为“颗粒分析仪”的计算模型来解释脂蛋白谱。在本研究中,我们使用患有特定遗传疾病的受试者进一步开发并校准了颗粒分析仪。随后,我们进行了技术验证,并从脂蛋白浓度和代谢通量的现有数据出发,初步评估其临床实用性。由于模型结果无法直接测量,唯一可用的技术验证是确证。对于临床实用性的初步评估,有来自各种类型血脂异常患者的汇总脂蛋白代谢通量数据。因此,我们研究了颗粒分析仪得出的脂蛋白代谢比值在区分已报告的血脂异常患者和血脂正常患者方面的效果如何。
我们发现该模型能够很好地拟合16项研究中15项研究的一系列血脂正常和血脂异常受试者,平均拟合误差为8.8%±5.0%;只有一项研究显示出较大的拟合误差。作为临床实用性的初步评估,我们表明基于极低密度脂蛋白代谢比值的一种诊断标志物在区分血脂异常和血脂正常受试者方面比甘油三酯、高密度脂蛋白胆固醇或低密度脂蛋白胆固醇表现更好。极低密度脂蛋白代谢比值分别优于每种传统诊断指标;当将其纳入经典诊断指标之上的多变量逻辑回归模型时,它们还增加了区分能力。
在本研究中,我们使用汇总的脂蛋白代谢通量数据进一步开发、校准并确证了颗粒分析仪计算模型。从血脂异常患者的汇总脂蛋白代谢通量数据中,我们得出了极低密度脂蛋白代谢比值,该比值在区分血脂正常和血脂异常受试者方面比包括高密度脂蛋白胆固醇、甘油三酯和低密度脂蛋白胆固醇在内标准诊断指标表现更好。由于血脂异常与心血管疾病和II型糖尿病的发展密切相关,脂蛋白代谢比值是这些疾病的候选风险标志物。原则上,通过将颗粒分析仪应用于单次脂蛋白谱测量即可获得这些比值,这使得临床应用成为可能。