Department of Biomedical Engineering, Columbia University, New York, NY, USA.
Ultrasound Med Biol. 2011 Dec;37(12):2013-27. doi: 10.1016/j.ultrasmedbio.2011.09.005. Epub 2011 Oct 27.
Harmonic motion imaging for focused ultrasound (HMIFU) is a novel high-intensity focused ultrasound (HIFU) therapy monitoring method with feasibilities demonstrated in vitro, ex vivo and in vivo. Its principle is based on amplitude-modulated (AM) - harmonic motion imaging (HMI), an oscillatory radiation force used for imaging the tissue mechanical response during thermal ablation. In this study, a theoretical framework of HMIFU is presented, comprising a customized nonlinear wave propagation model, a finite-element (FE) analysis module and an image-formation model. The objective of this study is to develop such a framework to (1) assess the fundamental performance of HMIFU in detecting HIFU lesions based on the change in tissue apparent elasticity, i.e., the increasing Young's modulus, and the HIFU lesion size with respect to the HIFU exposure time and (2) validate the simulation findings ex vivo. The same HMI and HMIFU parameters as in the experimental studies were used, i.e., 4.5-MHz HIFU frequency and 25 Hz AM frequency. For a lesion-to-background Young's modulus ratio of 3, 6 and 9, the FE and estimated HMI displacement ratios were equal to 1.83, 3.69 and 5.39 and 1.65, 3.19 and 4.59, respectively. In experiments, the HMI displacement followed a similar increasing trend of 1.19, 1.28 and 1.78 at 10-s, 20-s and 30-s HIFU exposure, respectively. In addition, moderate agreement in lesion size growth was found in both simulations (16.2, 73.1 and 334.7 mm(2)) and experiments (26.2, 94.2 and 206.2 mm(2)). Therefore, the feasibility of HMIFU for HIFU lesion detection based on the underlying tissue elasticity changes was verified through the developed theoretical framework, i.e., validation of the fundamental performance of the HMIFU system for lesion detection, localization and quantification, was demonstrated both theoretically and ex vivo.
超声谐波运动成像是一种新型高强度聚焦超声(HIFU)治疗监测方法,其在体外、离体和体内均得到了可行性验证。其原理基于调幅(AM)-谐波运动成像(HMI),即利用振荡辐射力来对热消融过程中组织的机械响应进行成像。在本研究中,提出了一种 HMIFU 的理论框架,包括定制的非线性波传播模型、有限元(FE)分析模块和图像形成模型。本研究的目的是开发这样一个框架,以(1)评估 HMIFU 在检测基于组织表观弹性变化(即杨氏模量逐渐增加)的 HIFU 损伤方面的基本性能,以及随着 HIFU 暴露时间变化的 HIFU 损伤大小,以及(2)在离体条件下验证模拟结果。本研究使用了与实验研究相同的 HMI 和 HMIFU 参数,即 4.5MHz 的 HIFU 频率和 25Hz 的 AM 频率。对于病变与背景杨氏模量比为 3、6 和 9,FE 和估计的 HMI 位移比分别为 1.83、3.69 和 5.39 和 1.65、3.19 和 4.59。在实验中,HMI 位移在 10s、20s 和 30s 的 HIFU 暴露下分别呈现出 1.19、1.28 和 1.78 的相似增长趋势。此外,在模拟(16.2、73.1 和 334.7mm(2))和实验(26.2、94.2 和 206.2mm(2))中均发现了病变大小增长的中等一致性。因此,通过开发的理论框架验证了 HMIFU 基于潜在组织弹性变化进行 HIFU 损伤检测的可行性,即从理论和离体两方面验证了 HMIFU 系统在损伤检测、定位和定量方面的基本性能。