Institute of Socio, Arts, and Sciences, Graduate School of Integrated Arts and Sciences, The University of Tokushima,1-1 Minamijosanjima-cho, Tokushima 770-8502, Japan.
Sci Total Environ. 2011 Dec 1;410-411:102-11. doi: 10.1016/j.scitotenv.2011.09.040. Epub 2011 Nov 1.
In the present study, aquatic concentrations of seven parabens were determined in urban streams highly affected by treated or untreated domestic sewage in Tokushima and Osaka, Japan. The detected highest concentrations were 670, 207, and 163ngl(-1) for methylparaben, n-propylparaben, and n-butylparaben, respectively in sampling sites with watershed area of no sewer system in Tokushima. Conventional acute/chronic toxicity tests were conducted using medaka (Oryzias latipes), Daphnia magna, and Psuedokirchneriella subcapitata for four parabens, which was consistent with our previous study on three parabens, n-butylparaben, i-butylparaben, and benzylparaben. The aquatic toxicity on fish, daphnia, and algae was weaker for the parabens with a shorter alkyl chain than those with a longer alkyl chain as predicted by their hydrophobicity. Medaka vitellogenin assays and DNA microarray analysis were carried out for methylparaben and found induction of significant vitellogenin in male medaka at 630μgl(-1) of methylparaben, while the expression levels of genes encoding proteins such as choriogenin and vitellogenin increased for concentrations at 10μgl(-1) of methylparaben. Measured environmental concentrations (MECs) of seven parabens in Tokushima and Osaka were divided by predicted no effect concentrations (PNECs) and hazard quotient (MEC/PNEC) was determined for individual parabens. The MEC/PNEC was highest for n-propylparaben and was 0.010 followed by n-butylparaben (max. of 0.0086) and methylparaben (max. of 0.0042). The sum of the MEC/PNEC for the seven parabens was 0.0049. Equivalence factors were assigned for each paraben on the basis of the toxicity of n-butylparaben for each species, and n-butylparaben equivalence was calculated for the measured environmental concentrations. The MEC/PNEC approach was also conducted for the n-butylparaben-based equivalence values. The maximum MEC/PNEC was 0.018, which is lower than the trigger level for further detailed study such as large-scale monitoring for chronic toxicity tests including full-life cycle tests for fish.
在本研究中,测定了日本德岛和大阪受处理和未处理生活污水影响较大的城市溪流中的七种防腐剂的水相浓度。在德岛无排水系统流域面积的采样点中,检测到的最高浓度分别为 670、207 和 163ng/L,分别为对羟基苯甲酸甲酯、正丙基对羟基苯甲酸酯和正丁基对羟基苯甲酸酯。使用三种传统的急性/慢性毒性试验(medaka(Oryzias latipes)、大型溞(Daphnia magna)和斜生栅藻(Pseudokirchneriella subcapitata))对四种防腐剂进行了测试,这与我们之前对三种防腐剂(n-丁基对羟基苯甲酸酯、i-丁基对羟基苯甲酸酯和对羟基苯甲酸苄酯)的研究一致。根据疏水性预测,具有较短烷基链的防腐剂对鱼类、溞类和藻类的水生毒性弱于具有较长烷基链的防腐剂。对羟基苯甲酸甲酯进行了鱼类卵黄蛋白原试验和 DNA 微阵列分析,发现 630μgl(-1)的对羟基苯甲酸甲酯可诱导雄性 medaka 显著产生卵黄蛋白原,而 10μgl(-1)的对羟基苯甲酸甲酯浓度可增加编码卵黄蛋白原和卵黄蛋白等蛋白质的基因的表达水平。德岛和大阪的七种防腐剂的实测环境浓度(MEC)除以预测无影响浓度(PNEC),并确定了单个防腐剂的危害商(MEC/PNEC)。n-丙基对羟基苯甲酸酯的 MEC/PNEC 最高,为 0.010,其次是 n-丁基对羟基苯甲酸酯(最高为 0.0086)和对羟基苯甲酸甲酯(最高为 0.0042)。七种防腐剂的 MEC/PNEC 之和为 0.0049。基于每种物种中 n-丁基对羟基苯甲酸酯的毒性,为每种对羟基苯甲酸酯分配了等效因子,并计算了实测环境浓度的 n-丁基对羟基苯甲酸酯等效值。还对基于 n-丁基对羟基苯甲酸酯的等效值进行了 MEC/PNEC 方法。最大 MEC/PNEC 为 0.018,低于触发水平,需要进一步进行详细研究,例如包括鱼类全生命周期试验在内的慢性毒性试验的大规模监测。