Smith Michael H, Lyon L Andrew
School of Chemistry & Biochemistry and the Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA.
Macromolecules. 2011 Sep 28;44(20):8154-8160. doi: 10.1021/ma201365p.
The binding of cytochrome c to pH and thermoresponsive colloidal hydrogels was investigated using multiangle light scattering, measuring loading through changes in particle molar mass and root mean square radius. Loosely cross-linked microgels [composed of a random copolymer of N-isopropylacrylamide (NIPAm) and acrylic acid (AAc)] demonstrated a high loading capacity for protein. Encapsulation was dependent on both the charge characteristics of the network and the salinity of the medium. Under favorable binding conditions (neutral pH, low ionic strength), microgels containing the highest studied charge density (30 mol% AAc) were capable of encapsulating greater than 9.7 × 10(5) cytochrome c molecules per particle. Binding resulted in the formation of a polymer-protein complex and condensation of the polymer. Anionic microgels demonstrated a change in density ~20-fold in the presence of oppositely charged proteins. These studies of cytochrome c encapsulation represent a significant step towards direct measurement of encapsulation efficiency in complex media as we pursue responsive nanogels and microgels for the delivery of macromolecular therapeutic agents.
利用多角度光散射研究了细胞色素c与pH和热响应性胶体水凝胶的结合,通过颗粒摩尔质量和均方根半径的变化来测量负载量。松散交联的微凝胶[由N-异丙基丙烯酰胺(NIPAm)和丙烯酸(AAc)的无规共聚物组成]表现出对蛋白质的高负载能力。包封取决于网络的电荷特性和介质的盐度。在有利的结合条件下(中性pH、低离子强度),含有研究中最高电荷密度(30 mol% AAc)的微凝胶每个颗粒能够包封超过9.7×10⁵个细胞色素c分子。结合导致形成聚合物-蛋白质复合物并使聚合物凝聚。在存在带相反电荷的蛋白质时,阴离子微凝胶的密度显示出约20倍的变化。随着我们追求用于递送大分子治疗剂的响应性纳米凝胶和微凝胶,这些关于细胞色素c包封的研究代表了朝着直接测量复杂介质中包封效率迈出的重要一步。