Suppr超能文献

高效计算基因组关系矩阵和单步评估中使用的其他矩阵。

Efficient computation of the genomic relationship matrix and other matrices used in single-step evaluation.

机构信息

Animal and Dairy Science Department, University of Georgia, Athens, GA, USA.

出版信息

J Anim Breed Genet. 2011 Dec;128(6):422-8. doi: 10.1111/j.1439-0388.2010.00912.x. Epub 2011 Jan 27.

Abstract

Genomic evaluations can be calculated using a unified procedure that combines phenotypic, pedigree and genomic information. Implementation of such a procedure requires the inverse of the relationship matrix based on pedigree and genomic relationships. The objective of this study was to investigate efficient computing options to create relationship matrices based on genomic markers and pedigree information as well as their inverses. SNP maker information was simulated for a panel of 40 K SNPs, with the number of genotyped animals up to 30 000. Matrix multiplication in the computation of the genomic relationship was by a simple 'do' loop, by two optimized versions of the loop, and by a specific matrix multiplication subroutine. Inversion was by a generalized inverse algorithm and by a LAPACK subroutine. With the most efficient choices and parallel processing, creation of matrices for 30 000 animals would take a few hours. Matrices required to implement a unified approach can be computed efficiently. Optimizations can be either by modifications of existing code or by the use of efficient automatic optimizations provided by open source or third-party libraries.

摘要

基因组评估可以使用一种统一的程序来计算,该程序结合了表型、系谱和基因组信息。实施这样的程序需要基于系谱和基因组关系的关系矩阵的逆。本研究的目的是研究有效的计算选项,以基于基因组标记和系谱信息以及它们的逆来创建关系矩阵。对一个包含 40 K SNP 的面板进行了 SNP 标记信息的模拟,基因分型动物的数量多达 30 000 个。基因组关系计算中的矩阵乘法是通过一个简单的“do”循环、两个循环的优化版本以及一个特定的矩阵乘法子程序来实现的。逆是通过广义逆算法和 LAPACK 子程序来实现的。通过最有效的选择和并行处理,为 30 000 个动物创建矩阵只需要几个小时。实现统一方法所需的矩阵可以有效地计算。优化可以是通过修改现有代码,也可以是通过使用开源或第三方库提供的高效自动优化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验