Suppr超能文献

基于线粒体钙离子单向转运体的作用机制模型,对镁离子抑制线粒体钙离子摄取的特性进行描述。

Characterization of Mg2+ inhibition of mitochondrial Ca2+ uptake by a mechanistic model of mitochondrial Ca2+ uniporter.

机构信息

Biotechnology and Bioengineering Center and Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.

出版信息

Biophys J. 2011 Nov 2;101(9):2071-81. doi: 10.1016/j.bpj.2011.09.029. Epub 2011 Nov 1.

Abstract

Ca(2+) is an important regulatory ion and alteration of mitochondrial Ca(2+) homeostasis can lead to cellular dysfunction and apoptosis. Ca(2+) is transported into respiring mitochondria via the Ca(2+) uniporter, which is known to be inhibited by Mg(2+). This uniporter-mediated mitochondrial Ca(2+) transport is also shown to be influenced by inorganic phosphate (Pi). Despite a large number of experimental studies, the kinetic mechanisms associated with the Mg(2+) inhibition and Pi regulation of the uniporter function are not well established. To gain a quantitative understanding of the effects of Mg(2+) and Pi on the uniporter function, we developed here a mathematical model based on known kinetic properties of the uniporter and presumed Mg(2+) inhibition and Pi regulation mechanisms. The model is extended from our previous model of the uniporter that is based on a multistate catalytic binding and interconversion mechanism and Eyring's free energy barrier theory for interconversion. The model satisfactorily describes a wide variety of experimental data sets on the kinetics of mitochondrial Ca(2+) uptake. The model also appropriately depicts the inhibitory effect of Mg(2+) on the uniporter function, in which Ca(2+) uptake is hyperbolic in the absence of Mg(2+) and sigmoid in the presence of Mg(2+). The model suggests a mixed-type inhibition mechanism for Mg(2+) inhibition of the uniporter function. This model is critical for building mechanistic models of mitochondrial bioenergetics and Ca(2+) handling to understand the mechanisms by which Ca(2+) mediates signaling pathways and modulates energy metabolism.

摘要

钙离子是一种重要的调节离子,线粒体钙离子稳态的改变可导致细胞功能障碍和细胞凋亡。钙离子通过钙离子单向转运体(Ca2+ uniporter)进入呼吸的线粒体,该转运体已知被镁离子(Mg2+)抑制。这种单向转运体介导的线粒体钙离子转运也受到无机磷酸盐(Pi)的影响。尽管进行了大量的实验研究,但与单向转运体功能的镁抑制和 Pi 调节相关的动力学机制尚未得到很好的确立。为了定量了解镁和 Pi 对单向转运体功能的影响,我们基于单向转运体的已知动力学特性以及假定的镁抑制和 Pi 调节机制,在此开发了一个数学模型。该模型是对我们之前基于单向转运体的多态催化结合和相互转化机制以及 Eyring 自由能垒理论的模型的扩展。该模型很好地描述了广泛的线粒体钙离子摄取动力学实验数据集。该模型还适当描述了镁对单向转运体功能的抑制作用,其中在没有镁的情况下,钙离子摄取呈双曲线,而在存在镁的情况下,钙离子摄取呈 S 形。该模型提示镁对单向转运体功能的抑制作用为混合抑制机制。该模型对于构建线粒体生物能量学和钙离子处理的机制模型至关重要,以了解钙离子如何介导信号通路并调节能量代谢。

相似文献

1
Characterization of Mg2+ inhibition of mitochondrial Ca2+ uptake by a mechanistic model of mitochondrial Ca2+ uniporter.
Biophys J. 2011 Nov 2;101(9):2071-81. doi: 10.1016/j.bpj.2011.09.029. Epub 2011 Nov 1.
2
A biophysically based mathematical model for the kinetics of mitochondrial calcium uniporter.
Biophys J. 2009 Feb 18;96(4):1318-32. doi: 10.1016/j.bpj.2008.11.005.
4
A biophysically based mathematical model for the kinetics of mitochondrial Na+-Ca2+ antiporter.
Biophys J. 2010 Jan 20;98(2):218-30. doi: 10.1016/j.bpj.2009.10.005.
6
Tissue-specific modulation of the mitochondrial calcium uniporter by magnesium ions.
FEBS Lett. 1985 Apr 22;183(2):260-4. doi: 10.1016/0014-5793(85)80789-4.
7
Manganese stimulates calcium flux through the mitochondrial uniporter.
Biochim Biophys Acta. 1985 May 3;807(2):202-9. doi: 10.1016/0005-2728(85)90123-9.
8
Mitochondrial Ca homeostasis in trypanosomes.
Int Rev Cell Mol Biol. 2021;362:261-289. doi: 10.1016/bs.ircmb.2021.01.002. Epub 2021 Feb 27.
9
Ca2+ ions, an allosteric activator of calcium uptake in rat liver mitochondria.
Arch Biochem Biophys. 1986 Dec;251(2):525-35. doi: 10.1016/0003-9861(86)90360-7.

引用本文的文献

2
Post-translational modifications and protein quality control of mitochondrial channels and transporters.
Front Cell Dev Biol. 2023 Aug 3;11:1196466. doi: 10.3389/fcell.2023.1196466. eCollection 2023.
3
Biochemical properties of H-Ca-exchanger in the myometrium mitochondria.
Curr Res Physiol. 2022 Sep 21;5:369-380. doi: 10.1016/j.crphys.2022.09.005. eCollection 2022.
4
MICU1 and MICU2 potentiation of Ca uptake by the mitochondrial Ca uniporter of Trypanosoma cruzi and its inhibition by Mg.
Cell Calcium. 2022 Nov;107:102654. doi: 10.1016/j.ceca.2022.102654. Epub 2022 Sep 21.
5
Crosstalk between adenine nucleotide transporter and mitochondrial swelling: experimental and computational approaches.
Cell Biol Toxicol. 2023 Apr;39(2):435-450. doi: 10.1007/s10565-022-09724-2. Epub 2022 May 24.
6
Influence of T-Bar on Calcium Concentration Impacting Release Probability.
Front Comput Neurosci. 2022 May 2;16:855746. doi: 10.3389/fncom.2022.855746. eCollection 2022.
8
Mitochondrial Metal Ion Transport in Cell Metabolism and Disease.
Int J Mol Sci. 2021 Jul 14;22(14):7525. doi: 10.3390/ijms22147525.
9
Magnesium Is a Key Player in Neuronal Maturation and Neuropathology.
Int J Mol Sci. 2019 Jul 12;20(14):3439. doi: 10.3390/ijms20143439.

本文引用的文献

2
A biophysically based mathematical model for the kinetics of mitochondrial Na+-Ca2+ antiporter.
Biophys J. 2010 Jan 20;98(2):218-30. doi: 10.1016/j.bpj.2009.10.005.
3
Modeling mitochondrial bioenergetics with integrated volume dynamics.
PLoS Comput Biol. 2010 Jan;6(1):e1000632. doi: 10.1371/journal.pcbi.1000632. Epub 2010 Jan 1.
4
Ca(2+) transfer from the ER to mitochondria: when, how and why.
Biochim Biophys Acta. 2009 Nov;1787(11):1342-51. doi: 10.1016/j.bbabio.2009.03.015. Epub 2009 Mar 31.
5
A biophysically based mathematical model for the kinetics of mitochondrial calcium uniporter.
Biophys J. 2009 Feb 18;96(4):1318-32. doi: 10.1016/j.bpj.2008.11.005.
6
Characteristics and possible functions of mitochondrial Ca(2+) transport mechanisms.
Biochim Biophys Acta. 2009 Nov;1787(11):1291-308. doi: 10.1016/j.bbabio.2008.12.011. Epub 2009 Jan 6.
7
Effect of cytosolic Mg2+ on mitochondrial Ca2+ signaling.
Pflugers Arch. 2009 Feb;457(4):941-54. doi: 10.1007/s00424-008-0551-0. Epub 2008 Jul 10.
9
Calcium cycling and signaling in cardiac myocytes.
Annu Rev Physiol. 2008;70:23-49. doi: 10.1146/annurev.physiol.70.113006.100455.
10
Computer modeling of mitochondrial tricarboxylic acid cycle, oxidative phosphorylation, metabolite transport, and electrophysiology.
J Biol Chem. 2007 Aug 24;282(34):24525-37. doi: 10.1074/jbc.M701024200. Epub 2007 Jun 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验