Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America.
PLoS Comput Biol. 2010 Jan;6(1):e1000632. doi: 10.1371/journal.pcbi.1000632. Epub 2010 Jan 1.
Mathematical models of mitochondrial bioenergetics provide powerful analytical tools to help interpret experimental data and facilitate experimental design for elucidating the supporting biochemical and physical processes. As a next step towards constructing a complete physiologically faithful mitochondrial bioenergetics model, a mathematical model was developed targeting the cardiac mitochondrial bioenergetic based upon previous efforts, and corroborated using both transient and steady state data. The model consists of several modified rate functions of mitochondrial bioenergetics, integrated calcium dynamics and a detailed description of the K(+)-cycle and its effect on mitochondrial bioenergetics and matrix volume regulation. Model simulations were used to fit 42 adjustable parameters to four independent experimental data sets consisting of 32 data curves. During the model development, a certain network topology had to be in place and some assumptions about uncertain or unobserved experimental factors and conditions were explicitly constrained in order to faithfully reproduce all the data sets. These realizations are discussed, and their necessity helps contribute to the collective understanding of the mitochondrial bioenergetics.
线粒体生物能量学的数学模型为帮助解释实验数据和促进阐明支持生化和物理过程的实验设计提供了强大的分析工具。作为构建完整生理忠实的线粒体生物能量学模型的下一步,基于先前的努力,针对心脏线粒体生物能量学开发了一个数学模型,并使用瞬态和稳态数据进行了验证。该模型由几个经过修改的线粒体生物能量学的速率函数、钙动力学的整合以及 K(+)循环的详细描述及其对线粒体生物能量学和基质体积调节的影响组成。模型模拟用于拟合 42 个可调参数到四个独立的实验数据集,包括 32 个数据曲线。在模型开发过程中,必须存在一定的网络拓扑结构,并且必须明确约束某些关于不确定或未观察到的实验因素和条件的假设,以便忠实地再现所有数据集。这些实现情况进行了讨论,其必要性有助于对线粒体生物能量学的集体理解做出贡献。