Psychology Department, University of California, Los Angeles,, Los Angeles, California 90095, USA.
J Neurosci. 2011 Nov 9;31(45):16157-76. doi: 10.1523/JNEUROSCI.0712-11.2011.
The rodent septohippocampal system contains "theta cells," which burst rhythmically at 4-12 Hz, but the functional significance of this rhythm remains poorly understood (Buzsáki, 2006). Theta rhythm commonly modulates the spike trains of spatially tuned neurons such as place (O'Keefe and Dostrovsky, 1971), head direction (Tsanov et al., 2011a), grid (Hafting et al., 2005), and border cells (Savelli et al., 2008; Solstad et al., 2008). An "oscillatory interference" theory has hypothesized that some of these spatially tuned neurons may derive their positional firing from phase interference among theta oscillations with frequencies that are modulated by the speed and direction of translational movements (Burgess et al., 2005, 2007). This theory is supported by studies reporting modulation of theta frequency by movement speed (Rivas et al., 1996; Geisler et al., 2007; Jeewajee et al., 2008a), but modulation of theta frequency by movement direction has never been observed. Here we recorded theta cells from hippocampus, medial septum, and anterior thalamus of freely behaving rats. Theta cell burst frequencies varied as the cosine of the rat's movement direction, and this directional tuning was influenced by landmark cues, in agreement with predictions of the oscillatory interference theory. Computer simulations and mathematical analysis demonstrated how a postsynaptic neuron can detect location-dependent synchrony among inputs from such theta cells, and thereby mimic the spatial tuning properties of place, grid, or border cells. These results suggest that theta cells may serve a high-level computational function by encoding a basis set of oscillatory signals that interfere with one another to synthesize spatial memory representations.
啮齿动物的隔海马系统包含“θ 细胞”,它们以 4-12 Hz 的频率有节奏地爆发,但这种节律的功能意义仍知之甚少(Buzsáki,2006)。θ 节律通常调制空间调谐神经元的尖峰序列,如位置(O'Keefe 和 Dostrovsky,1971)、头方向(Tsanov 等人,2011a)、网格(Hafting 等人,2005)和边界细胞(Savelli 等人,2008;Solstad 等人,2008)。一种“振荡干扰”理论假设,这些空间调谐神经元中的一些可能从相位干扰中获得其位置发射,这种相位干扰发生在由平移运动的速度和方向调制的θ 振荡之间(Burgess 等人,2005、2007)。该理论得到了一些研究的支持,这些研究报告了θ 频率受运动速度调制(Rivas 等人,1996;Geisler 等人,2007;Jeewajee 等人,2008a),但运动方向对θ 频率的调制从未被观察到。在这里,我们从自由活动的大鼠的海马体、内侧隔核和前丘脑记录θ 细胞。θ 细胞爆发频率随大鼠运动方向的余弦变化,这种方向调谐受地标线索的影响,与振荡干扰理论的预测一致。计算机模拟和数学分析表明,一个突触后神经元如何检测来自这些θ 细胞的输入之间与位置相关的同步性,并以此模拟位置、网格或边界细胞的空间调谐特性。这些结果表明,θ 细胞可以通过编码一组相互干扰的振荡信号来执行高级计算功能,从而合成空间记忆表示。