Suppr超能文献

耦合噪声尖峰神经元作为网格细胞空间放电模型中的速度控制振荡器。

Coupled noisy spiking neurons as velocity-controlled oscillators in a model of grid cell spatial firing.

机构信息

Center for Memory and Brain, Department of Psychology, Boston University, Boston, Massachusetts 02215, USA.

出版信息

J Neurosci. 2010 Oct 13;30(41):13850-60. doi: 10.1523/JNEUROSCI.0547-10.2010.

Abstract

One of the two primary classes of models of grid cell spatial firing uses interference between oscillators at dynamically modulated frequencies. Generally, these models are presented in terms of idealized oscillators (modeled as sinusoids), which differ from biological oscillators in multiple important ways. Here we show that two more realistic, noisy neural models (Izhikevich's simple model and a biophysical model of an entorhinal cortex stellate cell) can be successfully used as oscillators in a model of this type. When additive noise is included in the models such that uncoupled or sparsely coupled cells show realistic interspike interval variance, both synaptic and gap-junction coupling can synchronize networks of cells to produce comparatively less variable network-level oscillations. We show that the frequency of these oscillatory networks can be controlled sufficiently well to produce stable grid cell spatial firing on the order of at least 2-5 min, despite the high noise level. Our results suggest that the basic principles of oscillatory interference models work with more realistic models of noisy neurons. Nevertheless, a number of simplifications were still made and future work should examine increasingly realistic models.

摘要

网格细胞空间放电的两种主要模型之一使用动态调制频率的振荡器之间的干扰。一般来说,这些模型是根据理想化的振荡器(建模为正弦波)来表示的,这些振荡器在多个重要方面与生物振荡器不同。在这里,我们表明,两种更现实的、有噪声的神经模型(Izhikevich 的简单模型和一个内嗅皮层星状细胞的生物物理模型)可以成功地用作这种类型模型中的振荡器。当在模型中加入加性噪声,使得未耦合或稀疏耦合的细胞表现出现实的尖峰间隔方差时,突触和缝隙连接耦合都可以使细胞网络同步,产生相对变化较小的网络级振荡。我们表明,尽管噪声水平很高,但这些振荡网络的频率可以被很好地控制,以产生稳定的网格细胞空间放电,至少在 2-5 分钟的量级上。我们的结果表明,振荡干扰模型的基本原理适用于更现实的噪声神经元模型。然而,仍然进行了一些简化,未来的工作应该检查越来越现实的模型。

相似文献

1
Coupled noisy spiking neurons as velocity-controlled oscillators in a model of grid cell spatial firing.
J Neurosci. 2010 Oct 13;30(41):13850-60. doi: 10.1523/JNEUROSCI.0547-10.2010.
4
Controlling phase noise in oscillatory interference models of grid cell firing.
J Neurosci. 2014 Apr 30;34(18):6224-32. doi: 10.1523/JNEUROSCI.2540-12.2014.
6
Grid cells and theta as oscillatory interference: theory and predictions.
Hippocampus. 2008;18(12):1157-74. doi: 10.1002/hipo.20518.
8
A hybrid oscillatory interference/continuous attractor network model of grid cell firing.
J Neurosci. 2014 Apr 2;34(14):5065-79. doi: 10.1523/JNEUROSCI.4017-13.2014.
9
Cellular mechanisms of spatial navigation in the medial entorhinal cortex.
Nat Neurosci. 2013 Mar;16(3):325-31. doi: 10.1038/nn.3340. Epub 2013 Feb 10.

引用本文的文献

1
Exploiting noise as a resource for computation and learning in spiking neural networks.
Patterns (N Y). 2023 Sep 4;4(10):100831. doi: 10.1016/j.patter.2023.100831. eCollection 2023 Oct 13.
3
Simulation of oscillatory dynamics induced by an approximation of grid cell output.
Rev Neurosci. 2022 Nov 4;34(5):517-532. doi: 10.1515/revneuro-2022-0107. Print 2023 Jul 26.
4
Robust neuromorphic coupled oscillators for adaptive pacemakers.
Sci Rep. 2021 Sep 10;11(1):18073. doi: 10.1038/s41598-021-97314-3.
5
Multi-Scale Extension in an Entorhinal-Hippocampal Model for Cognitive Map Building.
Front Neurorobot. 2021 Jan 14;14:592057. doi: 10.3389/fnbot.2020.592057. eCollection 2020.
7
Cognitive swarming in complex environments with attractor dynamics and oscillatory computing.
Biol Cybern. 2020 Apr;114(2):269-284. doi: 10.1007/s00422-020-00823-z. Epub 2020 Mar 31.
8
The Role of Hierarchical Dynamical Functions in Coding for Episodic Memory and Cognition.
J Cogn Neurosci. 2019 Sep;31(9):1271-1289. doi: 10.1162/jocn_a_01439. Epub 2019 Jun 28.
9
Saccade Velocity Driven Oscillatory Network Model of Grid Cells.
Front Comput Neurosci. 2019 Jan 10;12:107. doi: 10.3389/fncom.2018.00107. eCollection 2018.

本文引用的文献

1
Coupling regularizes individual units in noisy populations.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jan;81(1 Pt 1):011911. doi: 10.1103/PhysRevE.81.011911. Epub 2010 Jan 21.
2
How synchronization protects from noise.
PLoS Comput Biol. 2010 Jan 15;6(1):e1000637. doi: 10.1371/journal.pcbi.1000637.
3
Gain control in CA1 pyramidal cells using changes in somatic conductance.
J Neurosci. 2010 Jan 6;30(1):230-41. doi: 10.1523/JNEUROSCI.3995-09.2010.
5
6
Functional consequences of animal-to-animal variation in circuit parameters.
Nat Neurosci. 2009 Nov;12(11):1424-30. doi: 10.1038/nn.2404. Epub 2009 Oct 18.
7
Intracellular dynamics of hippocampal place cells during virtual navigation.
Nature. 2009 Oct 15;461(7266):941-6. doi: 10.1038/nature08499.
8
The role of ongoing dendritic oscillations in single-neuron dynamics.
PLoS Comput Biol. 2009 Sep;5(9):e1000493. doi: 10.1371/journal.pcbi.1000493. Epub 2009 Sep 4.
9
Towards reproducible descriptions of neuronal network models.
PLoS Comput Biol. 2009 Aug;5(8):e1000456. doi: 10.1371/journal.pcbi.1000456. Epub 2009 Aug 7.
10
Robust path integration in the entorhinal grid cell system with hippocampal feed-back.
Biol Cybern. 2009 Jul;101(1):19-34. doi: 10.1007/s00422-009-0311-z. Epub 2009 Apr 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验