Suppr超能文献

病毒感染时,microRNA miR29 介导的表观遗传改变激活环氧化酶 2 和 lambda-1 干扰素的产生。

Epigenetic changes mediated by microRNA miR29 activate cyclooxygenase 2 and lambda-1 interferon production during viral infection.

机构信息

The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.

出版信息

J Virol. 2012 Jan;86(2):1010-20. doi: 10.1128/JVI.06169-11. Epub 2011 Nov 9.

Abstract

Lambda-1 interferon (IFN-λ1) and cyclooxygenase-2 (COX-2) were reported to play an important role in host antiviral defense. However, the mechanism by which IFN-λ1 and COX2 are activated and modulated during viral infection remains unclear. In this study, we found that expression of both circulating IFN-λ1 and COX2-derived prostaglandin E2 (PGE2) was coordinately elevated in a cohort of influenza patients compared to healthy individuals. Expression of IFN-λ1 was blocked by a selective COX2 inhibitor during influenza A virus infection in A549 human lung epithelial cells but enhanced by overexpression of COX2, indicating that the production of IFN-λ1 is COX2 dependent. COX2 was able to increase IFN-λ1 expression by promoting NF-κB binding to the enhancer in the IFN-λ1 promoter. We found that epigenetic changes activate COX2 expression and PGE2 accumulation during viral infection. The expression of DNA methyltransferase 3a (DNMT3a) and DNMT3b, but not that of DNMT1, was downregulated following influenza A virus infection in both A549 cells and peripheral blood mononuclear cells (PBMCs). We showed that microRNA miR29 suppresses DNMT activity and thus induces expression of COX2 and PGE2. Furthermore, miR29 expression was elevated 50-fold in virally infected A549 cells and 10-fold in PBMCs from influenza patients, compared to expression after mock infection of A549 cells or in healthy individuals, respectively. Activation of the protein kinase A signaling pathway and phosphorylation of CREB1 also contributed to COX2 expression. Collectively, our work defines a novel proinflammatory cascade in the control of influenza A virus infection.

摘要

λ-1 干扰素(IFN-λ1)和环氧化酶-2(COX-2)被报道在宿主抗病毒防御中发挥重要作用。然而,IFN-λ1 和 COX2 在病毒感染过程中如何被激活和调节的机制尚不清楚。在本研究中,我们发现与健康个体相比,流感患者群体中循环 IFN-λ1 和 COX2 衍生的前列腺素 E2(PGE2)的表达均显著升高。在 A549 人肺上皮细胞中感染甲型流感病毒时,选择性 COX2 抑制剂阻断了 IFN-λ1 的表达,但过表达 COX2 增强了 IFN-λ1 的表达,表明 IFN-λ1 的产生依赖于 COX2。COX2 能够通过促进 NF-κB 结合 IFN-λ1 启动子中的增强子来增加 IFN-λ1 的表达。我们发现,表观遗传变化在病毒感染过程中激活 COX2 的表达和 PGE2 的积累。在 A549 细胞和外周血单核细胞(PBMC)中,甲型流感病毒感染后,DNA 甲基转移酶 3a(DNMT3a)和 DNMT3b 的表达下调,但 DNMT1 的表达没有下调。我们表明,微小 RNA miR29 抑制 DNMT 活性,从而诱导 COX2 和 PGE2 的表达。此外,与 mock 感染 A549 细胞或健康个体相比,病毒感染的 A549 细胞中 miR29 的表达分别升高了 50 倍,流感患者的 PBMC 中 miR29 的表达升高了 10 倍。蛋白激酶 A 信号通路的激活和 CREB1 的磷酸化也有助于 COX2 的表达。总之,我们的工作定义了控制甲型流感病毒感染的新的促炎级联反应。

相似文献

2
Influenza A virus induces interleukin-27 through cyclooxygenase-2 and protein kinase A signaling.
J Biol Chem. 2012 Apr 6;287(15):11899-910. doi: 10.1074/jbc.M111.308064. Epub 2012 Feb 16.
3
In vitro anti-influenza A activity of interferon (IFN)-λ1 combined with IFN-β or oseltamivir carboxylate.
Antiviral Res. 2014 Nov;111:112-20. doi: 10.1016/j.antiviral.2014.09.008. Epub 2014 Sep 20.
4
Generation and characterization of interferon-lambda 1-resistant H1N1 influenza A viruses.
PLoS One. 2017 Jul 27;12(7):e0181999. doi: 10.1371/journal.pone.0181999. eCollection 2017.
8
MicroRNA-548 down-regulates host antiviral response via direct targeting of IFN-λ1.
Protein Cell. 2013 Feb;4(2):130-41. doi: 10.1007/s13238-012-2081-y. Epub 2012 Nov 12.
9
Inducible interleukin 32 (IL-32) exerts extensive antiviral function via selective stimulation of interferon λ1 (IFN-λ1).
J Biol Chem. 2013 Jul 19;288(29):20927-20941. doi: 10.1074/jbc.M112.440115. Epub 2013 May 31.
10
Protective efficacy of IFN-ω AND IFN-λs against influenza viruses in induced A549 cells.
Acta Virol. 2015 Dec;59(4):413-7. doi: 10.4149/av_2015_04_413.

引用本文的文献

2
Recent insights and perspectives into the role of the miRNA‑29 family in innate immunity (Review).
Int J Mol Med. 2025 Mar;55(3). doi: 10.3892/ijmm.2025.5494. Epub 2025 Jan 31.
7
Cytokines and microRNAs in SARS-CoV-2: What do we know?
Mol Ther Nucleic Acids. 2022 Sep 13;29:219-242. doi: 10.1016/j.omtn.2022.06.017. Epub 2022 Jun 25.
8
Antiviral Activity of a Cyclic Pro-Pro--HoPhe-Phe Tetrapeptide against HSV-1 and HAdV-5.
Molecules. 2022 May 31;27(11):3552. doi: 10.3390/molecules27113552.
9
miRNAs and Leukotrienes in Respiratory Syncytial Virus Infection.
Front Pediatr. 2021 Apr 29;9:602195. doi: 10.3389/fped.2021.602195. eCollection 2021.
10
An immune epigenetic insight to COVID-19 infection.
Epigenomics. 2021 Mar;13(6):465-480. doi: 10.2217/epi-2020-0349. Epub 2021 Mar 9.

本文引用的文献

2
MicroRNA 29b functions in acute myeloid leukemia.
Blood. 2009 Dec 17;114(26):5331-41. doi: 10.1182/blood-2009-03-211938. Epub 2009 Oct 22.
3
The role of transposable elements in the regulation of IFN-lambda1 gene expression.
Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11564-9. doi: 10.1073/pnas.0904477106. Epub 2009 Jul 1.
7
Epigenetic modification induced by hepatitis B virus X protein via interaction with de novo DNA methyltransferase DNMT3A.
J Hepatol. 2009 Feb;50(2):377-87. doi: 10.1016/j.jhep.2008.10.019. Epub 2008 Nov 28.
8
Activation of interleukin-32 pro-inflammatory pathway in response to influenza A virus infection.
PLoS One. 2008 Apr 16;3(4):e1985. doi: 10.1371/journal.pone.0001985.
9
Cytosolic antiviral RNA recognition pathway activates caspases 1 and 3.
J Immunol. 2008 Feb 1;180(3):1749-57. doi: 10.4049/jimmunol.180.3.1749.
10
Epigenetic silencing of cyclooxygenase-2 affects clinical outcome in gastric cancer.
J Clin Oncol. 2007 Nov 1;25(31):4887-94. doi: 10.1200/JCO.2006.09.8921.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验