Suppr超能文献

基于体外高通量分析预测体内抗肝纤维化药物疗效。

Predicting in vivo anti-hepatofibrotic drug efficacy based on in vitro high-content analysis.

机构信息

Computation and Systems Biology Program, Singapore-MIT Alliance, National University of Singapore, Singapore, Singapore.

出版信息

PLoS One. 2011;6(11):e26230. doi: 10.1371/journal.pone.0026230. Epub 2011 Nov 2.

Abstract

BACKGROUND/AIMS: Many anti-fibrotic drugs with high in vitro efficacies fail to produce significant effects in vivo. The aim of this work is to use a statistical approach to design a numerical predictor that correlates better with in vivo outcomes.

METHODS

High-content analysis (HCA) was performed with 49 drugs on hepatic stellate cells (HSCs) LX-2 stained with 10 fibrotic markers. ~0.3 billion feature values from all cells in >150,000 images were quantified to reflect the drug effects. A systematic literature search on the in vivo effects of all 49 drugs on hepatofibrotic rats yields 28 papers with histological scores. The in vivo and in vitro datasets were used to compute a single efficacy predictor (E(predict)).

RESULTS

We used in vivo data from one context (CCl(4) rats with drug treatments) to optimize the computation of E(predict). This optimized relationship was independently validated using in vivo data from two different contexts (treatment of DMN rats and prevention of CCl(4) induction). A linear in vitro-in vivo correlation was consistently observed in all the three contexts. We used E(predict) values to cluster drugs according to efficacy; and found that high-efficacy drugs tended to target proliferation, apoptosis and contractility of HSCs.

CONCLUSIONS

The E(predict) statistic, based on a prioritized combination of in vitro features, provides a better correlation between in vitro and in vivo drug response than any of the traditional in vitro markers considered.

摘要

背景/目的:许多体外疗效高的抗纤维化药物在体内却没有产生显著效果。本研究旨在采用统计学方法设计一个与体内结果相关性更好的数值预测因子。

方法

对肝星状细胞(HSCs)LX-2 进行高内涵分析(HCA),用 10 种纤维化标志物进行染色,对 49 种药物进行检测。对超过 15 万张图像中的所有细胞进行约 30 亿个特征值的定量分析,以反映药物的作用。对所有 49 种药物在肝纤维化大鼠体内作用的系统文献检索得到 28 篇具有组织学评分的论文。将体内和体外数据集用于计算单一疗效预测因子(E(predict))。

结果

我们使用来自一个背景(CCl4 大鼠用药物处理)的体内数据来优化 E(predict)的计算。该优化关系使用来自两个不同背景(DMN 大鼠治疗和 CCl4 诱导预防)的体内数据进行了独立验证。在所有三个背景中都观察到了线性的体外-体内相关性。我们使用 E(predict)值根据疗效对药物进行聚类;发现高疗效药物倾向于靶向 HSCs 的增殖、凋亡和收缩性。

结论

基于体外特征的优先组合的 E(predict)统计量提供了体外和体内药物反应之间比任何传统的体外标志物更好的相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/410e/3206809/c8c892708cd5/pone.0026230.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验