Suppr超能文献

计算从网络神经元的自适应同步中涌现。

Computation emerges from adaptive synchronization of networking neurons.

机构信息

Centre for Biomedical Technology, Polytechnic University of Madrid, Pozuelo de Alarcón, Madrid, Spain.

出版信息

PLoS One. 2011;6(11):e26467. doi: 10.1371/journal.pone.0026467. Epub 2011 Nov 4.

Abstract

The activity of networking neurons is largely characterized by the alternation of synchronous and asynchronous spiking sequences. One of the most relevant challenges that scientists are facing today is, then, relating that evidence with the fundamental mechanisms through which the brain computes and processes information, as well as with the arousal (or progress) of a number of neurological illnesses. In other words, the problem is how to associate an organized dynamics of interacting neural assemblies to a computational task. Here we show that computation can be seen as a feature emerging from the collective dynamics of an ensemble of networking neurons, which interact by means of adaptive dynamical connections. Namely, by associating logical states to synchronous neuron's dynamics, we show how the usual Boolean logics can be fully recovered, and a universal Turing machine can be constructed. Furthermore, we show that, besides the static binary gates, a wider class of logical operations can be efficiently constructed as the fundamental computational elements interact within an adaptive network, each operation being represented by a specific motif. Our approach qualitatively differs from the past attempts to encode information and compute with complex systems, where computation was instead the consequence of the application of control loops enforcing a desired state into the specific system's dynamics. Being the result of an emergent process, the computation mechanism here described is not limited to a binary Boolean logic, but it can involve a much larger number of states. As such, our results can enlighten new concepts for the understanding of the real computing processes taking place in the brain.

摘要

神经元网络的活动在很大程度上表现为同步和异步脉冲序列的交替。那么,科学家们目前面临的最具挑战性的问题之一是,将这些证据与大脑计算和处理信息的基本机制以及许多神经疾病的发作(或进展)联系起来。换句话说,问题在于如何将相互作用的神经网络集合的有组织动力学与计算任务联系起来。在这里,我们表明,计算可以被视为网络神经元集合集体动力学的一个特征,这些神经元通过自适应动态连接相互作用。也就是说,通过将逻辑状态与同步神经元的动力学相关联,我们展示了如何完全恢复通常的布尔逻辑,并构建了通用图灵机。此外,我们还表明,除了静态二进制门之外,还可以作为基本计算元素在自适应网络中相互作用,有效地构建更广泛的一类逻辑操作,每个操作都由特定的模式表示。我们的方法从本质上不同于过去尝试用复杂系统编码信息和进行计算的方法,在过去的方法中,计算是将期望状态应用于特定系统动力学的结果。由于是一个涌现过程的结果,这里描述的计算机制不仅限于二进制布尔逻辑,而是可以涉及更多的状态。因此,我们的结果可以为理解大脑中发生的实际计算过程提供新的概念。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e460/3208543/c5c70f366625/pone.0026467.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验