Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, USA.
BMC Bioinformatics. 2011 Nov 14;12:443. doi: 10.1186/1471-2105-12-443.
The biological phenotype of a cell, such as a characteristic visual image or behavior, reflects activities derived from the expression of collections of genes. As such, an ability to measure the expression of these genes provides an opportunity to develop more precise and varied sets of phenotypes. However, to use this approach requires computational methods that are difficult to implement and apply, and thus there is a critical need for intelligent software tools that can reduce the technical burden of the analysis. Tools for gene expression analyses are unusually difficult to implement in a user-friendly way because their application requires a combination of biological data curation, statistical computational methods, and database expertise.
We have developed SIGNATURE, a web-based resource that simplifies gene expression signature analysis by providing software, data, and protocols to perform the analysis successfully. This resource uses bayesian methods for processing gene expression data coupled with a curated database of gene expression signatures, all carried out within a GenePattern web interface for easy use and access.
SIGNATURE is available for public use at http://genepattern.genome.duke.edu/signature/.
细胞的生物学表型,如特征视觉图像或行为,反映了源自基因表达集合的活动。因此,测量这些基因表达的能力为更精确和多样化的表型提供了机会。然而,要使用这种方法需要难以实现和应用的计算方法,因此迫切需要智能软件工具来减轻分析的技术负担。由于其应用需要生物数据管理、统计计算方法和数据库专业知识的结合,因此用于基因表达分析的工具通常难以以用户友好的方式实现。
我们开发了 SIGNATURE,这是一个基于网络的资源,通过提供软件、数据和协议来成功进行分析,从而简化了基因表达特征分析。该资源使用贝叶斯方法处理基因表达数据,并结合了经过精心整理的基因表达特征数据库,所有这些都在易于使用和访问的 GenePattern 网络界面内进行。
SIGNATURE 可在 http://genepattern.genome.duke.edu/signature/ 上供公众使用。