Suppr超能文献

创伤性脑损伤和脊髓损伤中的抗氧化疗法。

Antioxidant therapies in traumatic brain and spinal cord injury.

作者信息

Bains Mona, Hall Edward D

机构信息

Spinal Cord & Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, Kentucky 40506, USA.

出版信息

Biochim Biophys Acta. 2012 May;1822(5):675-84. doi: 10.1016/j.bbadis.2011.10.017. Epub 2011 Nov 4.

Abstract

Free radical formation and oxidative damage have been extensively investigated and validated as important contributors to the pathophysiology of acute central nervous system injury. The generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) is an early event following injury occurring within minutes of mechanical impact. A key component in this event is peroxynitrite-induced lipid peroxidation. As discussed in this review, peroxynitrite formation and lipid peroxidation irreversibly damages neuronal membrane lipids and protein function, which results in subsequent disruptions in ion homeostasis, glutamate-mediated excitotoxicity, mitochondrial respiratory failure and microvascular damage. Antioxidant approaches include the inhibition and/or scavenging of superoxide, peroxynitrite, or carbonyl compounds, the inhibition of lipid peroxidation and the targeting of the endogenous antioxidant defense system. This review covers the preclinical and clinical literature supporting the role of ROS and RNS and their derived oxygen free radicals in the secondary injury response following acute traumatic brain injury (TBI) and spinal cord injury (SCI) and reviews the past and current trends in the development of antioxidant therapeutic strategies. Combinatorial treatment with the suggested mechanistically complementary antioxidants will also be discussed as a promising neuroprotective approach in TBI and SCI therapeutic research. This article is part of a Special Issue entitled: Antioxidants and antioxidant treatment in disease.

摘要

自由基的形成和氧化损伤已被广泛研究并证实是急性中枢神经系统损伤病理生理学的重要促成因素。活性氧(ROS)和活性氮(RNS)的产生是损伤后的早期事件,在机械冲击后几分钟内就会发生。该事件的一个关键组成部分是过氧亚硝酸盐诱导的脂质过氧化。如本综述中所讨论的,过氧亚硝酸盐的形成和脂质过氧化会不可逆地损害神经元膜脂质和蛋白质功能,从而导致随后的离子稳态破坏、谷氨酸介导的兴奋性毒性、线粒体呼吸衰竭和微血管损伤。抗氧化方法包括抑制和/或清除超氧化物、过氧亚硝酸盐或羰基化合物,抑制脂质过氧化以及靶向内源性抗氧化防御系统。本综述涵盖了支持ROS和RNS及其衍生的氧自由基在急性创伤性脑损伤(TBI)和脊髓损伤(SCI)后的继发性损伤反应中作用的临床前和临床文献,并回顾了抗氧化治疗策略发展的过去和当前趋势。还将讨论使用建议的具有机制互补性的抗氧化剂进行联合治疗,这是TBI和SCI治疗研究中一种有前景的神经保护方法。本文是名为:疾病中的抗氧化剂和抗氧化治疗的特刊的一部分。

相似文献

1
Antioxidant therapies in traumatic brain and spinal cord injury.
Biochim Biophys Acta. 2012 May;1822(5):675-84. doi: 10.1016/j.bbadis.2011.10.017. Epub 2011 Nov 4.
2
Antioxidant therapies for acute spinal cord injury.
Neurotherapeutics. 2011 Apr;8(2):152-67. doi: 10.1007/s13311-011-0026-4.
3
Lipid antioxidants in acute central nervous system injury.
Ann Emerg Med. 1993 Jun;22(6):1022-7. doi: 10.1016/s0196-0644(05)82745-3.
4
Free radicals in CNS injury.
Res Publ Assoc Res Nerv Ment Dis. 1993;71:81-105.
6
Lipid peroxidation in brain or spinal cord mitochondria after injury.
J Bioenerg Biomembr. 2016 Apr;48(2):169-74. doi: 10.1007/s10863-015-9600-5.
10
Antioxidant therapies in traumatic brain injury.
Neurochem Int. 2022 Jan;152:105255. doi: 10.1016/j.neuint.2021.105255. Epub 2021 Dec 13.

引用本文的文献

1
Revolutionizing neural regeneration with smart responsive materials: Current insights and future prospects.
Bioact Mater. 2025 Jun 13;52:393-421. doi: 10.1016/j.bioactmat.2025.06.003. eCollection 2025 Oct.
3
Manganese Porphyrin Treatment Improves Redox Status Caused by Acute Compressive Spinal Cord Trauma.
Antioxidants (Basel). 2025 May 14;14(5):587. doi: 10.3390/antiox14050587.
4
Fibrinogen and Neuroinflammation in the Neurovascular Unit in Stroke.
J Inflamm Res. 2025 Apr 1;18:4567-4584. doi: 10.2147/JIR.S496433. eCollection 2025.
5
7
Gallic acid showed neuroprotection against endoplasmic reticulum stress in rats.
Acta Cir Bras. 2025 Jan 13;40:e400925. doi: 10.1590/acb400925. eCollection 2025.
8
The evolving pathophysiology of TBI and the advantages of temporally-guided combination therapies.
Neurochem Int. 2024 Nov;180:105874. doi: 10.1016/j.neuint.2024.105874. Epub 2024 Oct 2.
9
A robust paradigm for studying regeneration after traumatic spinal cord injury in zebrafish.
J Neurosci Methods. 2024 Oct;410:110243. doi: 10.1016/j.jneumeth.2024.110243. Epub 2024 Aug 6.

本文引用的文献

2
Transcription factor Nrf2 protects the spinal cord from inflammation produced by spinal cord injury.
J Surg Res. 2011 Sep;170(1):e105-15. doi: 10.1016/j.jss.2011.05.049. Epub 2011 Jun 23.
3
Protective effect of tert-butylhydroquinone on cerebral inflammatory response following traumatic brain injury in mice.
Injury. 2011 Jul;42(7):714-8. doi: 10.1016/j.injury.2011.03.009. Epub 2011 Apr 3.
4
Antioxidant therapies for acute spinal cord injury.
Neurotherapeutics. 2011 Apr;8(2):152-67. doi: 10.1007/s13311-011-0026-4.
5
Pharmacological inhibition of lipid peroxidation attenuates calpain-mediated cytoskeletal degradation after traumatic brain injury.
J Neurochem. 2011 May;117(3):579-88. doi: 10.1111/j.1471-4159.2011.07228.x. Epub 2011 Mar 22.
6
Role of the Nrf2-ARE pathway in early brain injury after experimental subarachnoid hemorrhage.
J Neurosci Res. 2011 Apr;89(4):515-23. doi: 10.1002/jnr.22577. Epub 2011 Jan 21.
7
Resveratrol improves neuron protection and functional recovery in rat model of spinal cord injury.
Brain Res. 2011 Feb 16;1374:100-9. doi: 10.1016/j.brainres.2010.11.061. Epub 2010 Nov 25.
8
9
The role of Nrf2 signaling in the regulation of antioxidants and detoxifying enzymes after traumatic brain injury in rats and mice.
Acta Pharmacol Sin. 2010 Nov;31(11):1421-30. doi: 10.1038/aps.2010.101. Epub 2010 Oct 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验