Suppr超能文献

使用倾向得分估计中介分析中的因果效应。

Estimating Causal Effects in Mediation Analysis using Propensity Scores.

作者信息

Coffman Donna L

机构信息

The Pennsylvania State University.

出版信息

Struct Equ Modeling. 2011 Jan 1;18(3):357-369. doi: 10.1080/10705511.2011.582001.

Abstract

Mediation is usually assessed by a regression-based or structural equation modeling (SEM) approach that we will refer to as the classical approach. This approach relies on the assumption that there are no confounders that influence both the mediator, M, and the outcome, Y. This assumption holds if individuals are randomly assigned to levels of M but generally random assignment is not possible. We propose the use of propensity scores to help remove the selection bias that may result when individuals are not randomly assigned to levels of M. The propensity score is the probability that an individual receives a particular level of M. Results from a simulation study are presented to demonstrate this approach, referred to as Classical + Propensity Model (C+PM), confirming that the population parameters are recovered and that selection bias is successfully dealt with. Comparisons are made to the classical approach that does not include propensity scores. Propensity scores were estimated by a logistic regression model. If all confounders are included in the propensity model, then the C+PM is unbiased. If some, but not all, of the confounders are included in the propensity model, then the C+PM estimates are biased although not as severely as the classical approach (i.e. no propensity model is included).

摘要

中介效应通常通过基于回归或结构方程模型(SEM)的方法进行评估,我们将其称为经典方法。这种方法依赖于这样一个假设,即不存在同时影响中介变量M和结果变量Y的混杂因素。如果个体被随机分配到M的不同水平,那么这个假设成立,但通常情况下随机分配是不可能的。我们建议使用倾向得分来帮助消除当个体没有被随机分配到M的不同水平时可能产生的选择偏差。倾向得分是个体接受特定水平M的概率。本文呈现了一项模拟研究的结果,以证明这种被称为经典+倾向模型(C+PM)的方法,证实了总体参数得以恢复,且选择偏差得到了成功处理。同时与不包括倾向得分的经典方法进行了比较。倾向得分通过逻辑回归模型进行估计。如果所有混杂因素都包含在倾向模型中,那么C+PM是无偏的。如果部分而非全部混杂因素包含在倾向模型中,那么C+PM估计值会有偏差,尽管不像经典方法(即不包含倾向模型)那样严重。

相似文献

1
Estimating Causal Effects in Mediation Analysis using Propensity Scores.
Struct Equ Modeling. 2011 Jan 1;18(3):357-369. doi: 10.1080/10705511.2011.582001.
3
Assessing mediation using marginal structural models in the presence of confounding and moderation.
Psychol Methods. 2012 Dec;17(4):642-64. doi: 10.1037/a0029311. Epub 2012 Aug 20.
4
Propensity score analysis with partially observed covariates: How should multiple imputation be used?
Stat Methods Med Res. 2019 Jan;28(1):3-19. doi: 10.1177/0962280217713032. Epub 2017 Jun 2.
6
Linear high-dimensional mediation models adjusting for confounders using propensity score method.
Front Genet. 2022 Oct 10;13:961148. doi: 10.3389/fgene.2022.961148. eCollection 2022.
7
Estimating effects of nursing intervention via propensity score analysis.
Nurs Res. 2008 Nov-Dec;57(6):444-52. doi: 10.1097/NNR.0b013e31818c66f6.
10

引用本文的文献

3
Linear high-dimensional mediation models adjusting for confounders using propensity score method.
Front Genet. 2022 Oct 10;13:961148. doi: 10.3389/fgene.2022.961148. eCollection 2022.
4
High-Dimensional Mediation Analysis With Confounders in Survival Models.
Front Genet. 2021 Jun 28;12:688871. doi: 10.3389/fgene.2021.688871. eCollection 2021.
5
Assessing Potential Outcomes Mediation in HIV Interventions.
AIDS Behav. 2021 Aug;25(8):2441-2454. doi: 10.1007/s10461-021-03207-x. Epub 2021 Mar 19.
6
Rural-to-urban migration, discrimination experience, and health in China: Evidence from propensity score analysis.
PLoS One. 2020 Dec 28;15(12):e0244441. doi: 10.1371/journal.pone.0244441. eCollection 2020.
7
Evaluating a Method to Estimate Mediation Effects With Discrete-Time Survival Outcomes.
Front Psychol. 2019 Apr 5;10:740. doi: 10.3389/fpsyg.2019.00740. eCollection 2019.

本文引用的文献

1
An Alternative Framework for Defining Mediation.
Multivariate Behav Res. 1998 Apr 1;33(2):295-312. doi: 10.1207/s15327906mbr3302_5.
2
Improving propensity score weighting using machine learning.
Stat Med. 2010 Feb 10;29(3):337-46. doi: 10.1002/sim.3782.
3
The use of propensity score methods in psychiatric research.
Int J Methods Psychiatr Res. 2006 Jun;15(2):95-103. doi: 10.1002/mpr.183.
4
Causal Mediation Analyses for Randomized Trials.
Health Serv Outcomes Res Methodol. 2008;8(2):57-76. doi: 10.1007/s10742-008-0028-9.
5
Mediation analysis with principal stratification.
Stat Med. 2009 Mar 30;28(7):1108-30. doi: 10.1002/sim.3533.
6
Causal inference in randomized experiments with mediational processes.
Psychol Methods. 2008 Dec;13(4):314-36. doi: 10.1037/a0014207.
7
Average causal effects from nonrandomized studies: a practical guide and simulated example.
Psychol Methods. 2008 Dec;13(4):279-313. doi: 10.1037/a0014268.
9
Causal mediation analyses with rank preserving models.
Biometrics. 2007 Sep;63(3):926-34. doi: 10.1111/j.1541-0420.2007.00766.x.
10
Mediation analysis.
Annu Rev Psychol. 2007;58:593-614. doi: 10.1146/annurev.psych.58.110405.085542.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验