Suppr超能文献

评估 HIV 干预措施中潜在结局的中介作用。

Assessing Potential Outcomes Mediation in HIV Interventions.

机构信息

Department of Psychology, Arizona State University, PO Box 871104, Tempe, AZ, 85287-1104, USA.

School of Social Work, San Diego State University, San Diego, CA, USA.

出版信息

AIDS Behav. 2021 Aug;25(8):2441-2454. doi: 10.1007/s10461-021-03207-x. Epub 2021 Mar 19.

Abstract

Knowledge of causal processes through mediation analysis can help improve the effectiveness and reduce costs of public health programs, like HIV prevention and treatment interventions. Advancements in mediation using the potential outcomes framework provide a method for estimating the causal effect of interventions on outcomes via a mediating variable. The purpose of this paper is to provide practical information about mediation and the potential outcomes framework that can enhance data analysis and causal inference for intervention studies. Causal mediation effects are defined and then estimated using data from an HIV intervention randomized trial among people who inject drugs (PWID) in Ukraine. Results from a potential outcomes mediation analysis show that the intervention had a total causal effect on incident HIV infection such that participants in the experimental group were 36% less likely to become infected during the 12-month study than those in the control arm, but that neither self-efficacy nor network communication mediated this effect. Because neither putative mediator was significant, measurement and confounding issues should be investigated to rule out these mediators. Other putative mediators, such as injection frequency, route of administration, or HIV knowledge can be considered. Future research is underway to examine additional, multiple mediators explaining efficacy of the current intervention and sensitivity to confounding effects.

摘要

通过中介分析了解因果过程有助于提高公共卫生项目(如艾滋病预防和治疗干预措施)的效果并降低成本。使用潜在结果框架进行中介分析的进步为通过中介变量估计干预对结果的因果效应提供了一种方法。本文的目的是提供有关中介分析和潜在结果框架的实用信息,以增强干预研究的数据分析和因果推断。定义了因果中介效应,然后使用乌克兰注射吸毒者(PWID)中一项艾滋病干预随机试验的数据进行了估计。潜在结果中介分析的结果表明,该干预措施对艾滋病感染事件产生了总因果效应,实验组参与者在 12 个月的研究期间感染艾滋病的可能性比对照组低 36%,但自我效能感和网络沟通均未介导这种效应。由于两个潜在的中介变量都不显著,因此应该调查测量和混杂问题,以排除这些中介变量。可以考虑其他潜在的中介变量,如注射频率、给药途径或艾滋病知识。正在进行未来的研究,以检验解释当前干预效果和对混杂效应敏感性的其他多个中介变量。

相似文献

1
Assessing Potential Outcomes Mediation in HIV Interventions.评估 HIV 干预措施中潜在结局的中介作用。
AIDS Behav. 2021 Aug;25(8):2441-2454. doi: 10.1007/s10461-021-03207-x. Epub 2021 Mar 19.
5
Assessing mediation in HIV intervention studies.评估HIV干预研究中的中介作用。
Public Health Rep. 2009 Mar-Apr;124(2):288-94. doi: 10.1177/003335490912400217.
9
Causal mediation analysis with mediator values below an assay limit.中介值低于检测限的因果中介分析。
Stat Med. 2024 May 30;43(12):2299-2313. doi: 10.1002/sim.10065. Epub 2024 Mar 31.

本文引用的文献

2
Causal Mediation Programs in R, M, SAS, SPSS, and Stata.R、M、SAS、SPSS和Stata中的因果中介程序。
Struct Equ Modeling. 2020;27(6):975-984. doi: 10.1080/10705511.2020.1777133. Epub 2020 Aug 3.
8
Does water kill? A call for less casual causal inferences.水会致命吗?呼吁减少随意的因果推断。
Ann Epidemiol. 2016 Oct;26(10):674-680. doi: 10.1016/j.annepidem.2016.08.016. Epub 2016 Aug 31.
9
Design approaches to experimental mediation.实验性中介的设计方法。
J Exp Soc Psychol. 2016 Sep;66:29-38. doi: 10.1016/j.jesp.2015.09.012. Epub 2016 Mar 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验