Genomic and Expression Laboratory (LGE), Genetic, Evolution and Bioagents Department, State University of Campinas, Campinas, Brazil.
Biotechnol Biofuels. 2011 Nov 14;4:50. doi: 10.1186/1754-6834-4-50.
Lignocellulosic materials have been moved towards the forefront of the biofuel industry as a sustainable resource. However, saccharification and the production of bioproducts derived from plant cell wall biomass are complex and lengthy processes. The understanding of termite gut biology and feeding strategies may improve the current state of biomass conversion technology and bioproduct production.
The study herein shows comprehensive functional characterization of crude body extracts from Coptotermes gestroi along with global proteomic analysis of the termite's digestome, targeting the identification of glycoside hydrolases and accessory proteins responsible for plant biomass conversion. The crude protein extract from C. gestroi was enzymatically efficient over a broad pH range on a series of natural polysaccharides, formed by glucose-, xylose-, mannan- and/or arabinose-containing polymers, linked by various types of glycosidic bonds, as well as ramification types. Our proteomic approach successfully identified a large number of relevant polypeptides in the C. gestroi digestome. A total of 55 different proteins were identified and classified into 29 CAZy families. Based on the total number of peptides identified, the majority of components found in the C. gestroi digestome were cellulose-degrading enzymes. Xylanolytic enzymes, mannan- hydrolytic enzymes, pectinases and starch-degrading and debranching enzymes were also identified. Our strategy enabled validation of liquid chromatography with tandem mass spectrometry recognized proteins, by enzymatic functional assays and by following the degradation products of specific 8-amino-1,3,6-pyrenetrisulfonic acid labeled oligosaccharides through capillary zone electrophoresis.
Here we describe the first global study on the enzymatic repertoire involved in plant polysaccharide degradation by the lower termite C. gestroi. The biochemical characterization of whole body termite extracts evidenced their ability to cleave all types of glycosidic bonds present in plant polysaccharides. The comprehensive proteomic analysis, revealed a complete collection of hydrolytic enzymes including cellulases (GH1, GH3, GH5, GH7, GH9 and CBM 6), hemicellulases (GH2, GH10, GH11, GH16, GH43 and CBM 27) and pectinases (GH28 and GH29).
木质纤维素材料作为一种可持续资源,已成为生物燃料行业的焦点。然而,糖化和从植物细胞壁生物质生产生物制品是复杂而漫长的过程。对白蚁肠道生物学和取食策略的了解可能会改善当前的生物质转化技术和生物制品生产状态。
本研究全面表征了 Coptotermes gestroi 虫体粗提物的功能,并对其消化组进行了全局蛋白质组分析,旨在鉴定负责植物生物质转化的糖苷水解酶和辅助蛋白。C. gestroi 的粗蛋白提取物在一系列天然多糖上具有广泛 pH 范围内的酶促效率,这些多糖由葡萄糖、木糖、甘露糖和/或阿拉伯糖组成的聚合物组成,通过各种糖苷键以及支化类型连接。我们的蛋白质组学方法成功地在 C. gestroi 消化组中鉴定出大量相关多肽。共鉴定出 55 种不同的蛋白质,并分为 29 个 CAZy 家族。根据鉴定的肽总数,C. gestroi 消化组中发现的大多数成分是纤维素降解酶。木聚糖酶、甘露聚糖水解酶、果胶酶以及淀粉降解和脱支酶也被鉴定出来。我们的策略通过酶功能测定和通过毛细管区带电泳跟踪特定的 8-氨基-1,3,6-吡嗪三磺酸标记寡糖的降解产物,验证了液相色谱-串联质谱识别的蛋白质。
在这里,我们描述了对低等白蚁 C. gestroi 参与植物多糖降解的酶谱的首次全面研究。虫体全提取物的生化特征表明其具有切割植物多糖中所有糖苷键的能力。全面的蛋白质组学分析揭示了一套完整的水解酶,包括纤维素酶(GH1、GH3、GH5、GH7、GH9 和 CBM6)、半纤维素酶(GH2、GH10、GH11、GH16、GH43 和 CBM27)和果胶酶(GH28 和 GH29)。