Thomas J. Watson Laboratories of Applied Physics, California Institute of Technology, Pasadena, California 91125, United States.
ACS Nano. 2011 Dec 27;5(12):10055-64. doi: 10.1021/nn203906t. Epub 2011 Nov 18.
The integration of nanophotonic and plasmonic structures with solar cells offers the ability to control and confine light in nanoscale dimensions. These nanostructures can be used to couple incident sunlight into both localized and guided modes, enhancing absorption while reducing the quantity of material. Here we use electromagnetic modeling to study the resonances in a solar cell containing both plasmonic metal back contacts and nanostructured semiconductor top contacts, identify the local and guided modes contributing to enhanced absorption, and optimize the design. We then study the role of the different interfaces and show that Al is a viable plasmonic back contact material.
将纳米光子学和等离子体结构与太阳能电池集成,可实现对纳米尺度光的控制和限制。这些纳米结构可用于将入射太阳光耦合到局域和引导模式中,从而提高吸收率,同时减少材料用量。在这里,我们使用电磁建模研究了包含等离子体金属背接触和纳米结构半导体顶接触的太阳能电池中的共振,确定了增强吸收的局域模式和引导模式,并对设计进行了优化。然后,我们研究了不同界面的作用,并表明 Al 是一种可行的等离子体背接触材料。