Suppr超能文献

用于高性能光电器件的高精度、高效且考虑制造公差的纳米结构预测。

Highly accurate, efficient, and fabrication tolerance-aware nanostructure prediction for high-performance optoelectronic devices.

作者信息

Jeong Won-Kyeong, Kim Ki-Hoon, Park Chaehyun, Song Dae Geun, Song Myungkwan, Seo Min-Ho

机构信息

Department of Information Convergence Engineering, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan-si, Gyeongsangnam-do, 50612, Republic of Korea.

Department of Energy & Electronic Materials, Korea Institute of Materials Science (KIMS), 797 Changwon-daero, Sungsan-gu, Changwon-si, Gyeongsangnam-do, 51508, Republic of Korea.

出版信息

Sci Rep. 2024 Dec 3;14(1):30113. doi: 10.1038/s41598-024-81794-0.

Abstract

Despite extensive efforts to predict optimal nanostructures for enhancing optical devices, a more accurate, efficient, and practical method for nanostructure optimisation is required. In particular, fabrication tolerance is a promising avenue for significantly improving manufacturing efficiency; however, research in this area is limited. In this study, we introduce a practical approach for enhancing the performance of optoelectronic devices using an artificial intelligence (AI)-based nanostructure optimisation strategy. We optimised a support vector regression (SVR) model to capture the complex and nonlinear relationships between the transmittance and nanograting structure variables with the goal of improving optoelectronic devices. Our versatile model accurately predicted the continuous transmittance data with high precision (R = 0.995) using only 216 training data points. It can also make predictions under untrained conditions, thereby enabling the creation of a transmittance nanostructure contour map (R = 0.949). This method facilitates the design of nanostructures tailored to specific optical properties and provides valuable insights into fabrication tolerance. Through experimental validation, we identified an optimal nanograting structure with the highest transmittance in the visible-light spectrum. When integrated into optoelectronic devices such as organic light-emitting diodes (OLEDs) and organic solar cells (OSCs), their performance is significantly improved by increasing the light transmittance. Specifically, devices using the fabricated nanograting film exhibited a 17% improvement in external quantum efficiency (EQE) for solution-processed organic light-emitting diodes (SP-OLEDs) and a 10.7% improvement in power-conversion efficiency (PCE) for OSCs.

摘要

尽管人们为预测用于增强光学器件的最佳纳米结构付出了巨大努力,但仍需要一种更准确、高效且实用的纳米结构优化方法。特别是,制造公差是大幅提高制造效率的一个有前景的途径;然而,该领域的研究有限。在本研究中,我们引入了一种实用方法,使用基于人工智能(AI)的纳米结构优化策略来提高光电器件的性能。我们优化了一个支持向量回归(SVR)模型,以捕捉透过率与纳米光栅结构变量之间复杂的非线性关系,目标是改进光电器件。我们通用的模型仅使用216个训练数据点就能高精度地准确预测连续透过率数据(R = 0.995)。它还能在未训练的条件下进行预测,从而创建透过率纳米结构等高线图(R = 0.949)。这种方法有助于设计针对特定光学特性的纳米结构,并为制造公差提供有价值的见解。通过实验验证,我们确定了在可见光谱中具有最高透过率的最佳纳米光栅结构。当集成到有机发光二极管(OLED)和有机太阳能电池(OSC)等光电器件中时,通过提高光透过率,它们的性能得到显著改善。具体而言,使用制造的纳米光栅薄膜的器件,溶液处理的有机发光二极管(SP - OLED)的外量子效率(EQE)提高了17%,有机太阳能电池(OSC)的功率转换效率(PCE)提高了10.7%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验