Suppr超能文献

解析氨基酸代谢的转录调控逻辑。

Deciphering the transcriptional regulatory logic of amino acid metabolism.

机构信息

Department of Bioengineering, University of California at San Diego, La Jolla, California, USA.

出版信息

Nat Chem Biol. 2011 Nov 13;8(1):65-71. doi: 10.1038/nchembio.710.

Abstract

Although metabolic networks have been reconstructed on a genome scale, the corresponding reconstruction and integration of governing transcriptional regulatory networks has not been fully achieved. Here we reconstruct such an integrated network for amino acid metabolism in Escherichia coli. Analysis of ChIP-chip and gene expression data for the transcription factors ArgR, Lrp and TrpR showed that 19 out of 20 amino acid biosynthetic pathways are either directly or indirectly controlled by these regulators. Classifying the regulated genes into three functional categories of transport, biosynthesis and metabolism leads to the elucidation of regulatory motifs that constitute the integrated network's basic building blocks. The regulatory logic of these motifs was determined on the basis of relationships between transcription factor binding and changes in the amount of transcript in response to exogenous amino acids. Remarkably, the resulting logic shows how amino acids are differentiated as signaling and nutrient molecules, revealing the overarching regulatory principles of the amino acid stimulon.

摘要

尽管已经在基因组范围内重建了代谢网络,但相应的转录调控网络的重建和整合尚未完全实现。在这里,我们为大肠杆菌的氨基酸代谢重建了这样一个集成网络。对 ChIP-chip 和基因表达数据的分析表明,ArgR、Lrp 和 TrpR 这三个转录因子直接或间接控制了 20 种氨基酸生物合成途径中的 19 种。将受调控的基因分为运输、生物合成和代谢三个功能类别,可以阐明构成集成网络基本构建块的调控模体。这些模体的调控逻辑是基于转录因子结合与对外源氨基酸的转录物数量变化之间的关系来确定的。值得注意的是,由此产生的逻辑揭示了氨基酸作为信号和营养分子的区别,揭示了氨基酸刺激物的总体调控原则。

相似文献

1
Deciphering the transcriptional regulatory logic of amino acid metabolism.
Nat Chem Biol. 2011 Nov 13;8(1):65-71. doi: 10.1038/nchembio.710.
2
Comparative genomic reconstruction of transcriptional networks controlling central metabolism in the Shewanella genus.
BMC Genomics. 2011 Jun 15;12 Suppl 1(Suppl 1):S3. doi: 10.1186/1471-2164-12-S1-S3.
3
Genomic footprinting uncovers global transcription factor responses to amino acids in Escherichia coli.
Cell Syst. 2023 Oct 18;14(10):860-871.e4. doi: 10.1016/j.cels.2023.09.003. Epub 2023 Oct 10.
4
Genome-scale reconstruction of the Lrp regulatory network in Escherichia coli.
Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19462-7. doi: 10.1073/pnas.0807227105. Epub 2008 Dec 3.
10
Metabolism: Amino acid regulatory wisdom.
Nat Chem Biol. 2011 Dec 15;8(1):23-4. doi: 10.1038/nchembio.743.

引用本文的文献

1
Arginine regulates the mucoid phenotype of hypervirulent Klebsiella pneumoniae.
Nat Commun. 2025 Jul 1;16(1):5875. doi: 10.1038/s41467-025-61047-y.
2
Arginine Regulates the Mucoid Phenotype of Hypervirulent .
bioRxiv. 2024 Nov 20:2024.11.20.624485. doi: 10.1101/2024.11.20.624485.
3
Feeling hormonal? Insights into bacterial auxin sensing and its physiological effects.
mSystems. 2024 Oct 22;9(10):e0061124. doi: 10.1128/msystems.00611-24. Epub 2024 Sep 13.
4
Enhanced metabolic entanglement emerges during the evolution of an interkingdom microbial community.
Nat Commun. 2024 Aug 22;15(1):7238. doi: 10.1038/s41467-024-51702-1.
5
Auxin-mediated regulation of susceptibility to toxic metabolites, c-di-GMP levels, and phage infection in the rhizobacterium .
mSystems. 2024 Jul 23;9(7):e0016524. doi: 10.1128/msystems.00165-24. Epub 2024 Jun 5.
7
The Escherichia coli Fur pan-regulon has few conserved but many unique regulatory targets.
Nucleic Acids Res. 2023 May 8;51(8):3618-3630. doi: 10.1093/nar/gkad253.
8
How It All Begins: Bacterial Factors Mediating the Colonization of Invertebrate Hosts by Beneficial Symbionts.
Microbiol Mol Biol Rev. 2022 Dec 21;86(4):e0012621. doi: 10.1128/mmbr.00126-21. Epub 2022 Oct 27.
9
Protein engineering for feedback resistance in 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase.
Appl Microbiol Biotechnol. 2022 Oct;106(19-20):6505-6517. doi: 10.1007/s00253-022-12166-9. Epub 2022 Sep 16.
10
Homeostasis of the biosynthetic metabolome.
iScience. 2022 Jun 2;25(7):104503. doi: 10.1016/j.isci.2022.104503. eCollection 2022 Jul 15.

本文引用的文献

1
The PurR regulon in Escherichia coli K-12 MG1655.
Nucleic Acids Res. 2011 Aug;39(15):6456-64. doi: 10.1093/nar/gkr307. Epub 2011 May 13.
2
RegulonDB version 7.0: transcriptional regulation of Escherichia coli K-12 integrated within genetic sensory response units (Gensor Units).
Nucleic Acids Res. 2011 Jan;39(Database issue):D98-105. doi: 10.1093/nar/gkq1110. Epub 2010 Nov 4.
3
Comprehensive comparative analysis of strand-specific RNA sequencing methods.
Nat Methods. 2010 Sep;7(9):709-15. doi: 10.1038/nmeth.1491. Epub 2010 Aug 15.
4
The transcription unit architecture of the Escherichia coli genome.
Nat Biotechnol. 2009 Nov;27(11):1043-9. doi: 10.1038/nbt.1582. Epub 2009 Nov 1.
5
Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli.
Nat Chem Biol. 2009 Aug;5(8):593-9. doi: 10.1038/nchembio.186. Epub 2009 Jun 28.
6
MEME SUITE: tools for motif discovery and searching.
Nucleic Acids Res. 2009 Jul;37(Web Server issue):W202-8. doi: 10.1093/nar/gkp335. Epub 2009 May 20.
7
Genome-scale reconstruction of the Lrp regulatory network in Escherichia coli.
Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19462-7. doi: 10.1073/pnas.0807227105. Epub 2008 Dec 3.
8
EcoCyc: a comprehensive view of Escherichia coli biology.
Nucleic Acids Res. 2009 Jan;37(Database issue):D464-70. doi: 10.1093/nar/gkn751. Epub 2008 Oct 30.
10
Genome-wide analysis of Fis binding in Escherichia coli indicates a causative role for A-/AT-tracts.
Genome Res. 2008 Jun;18(6):900-10. doi: 10.1101/gr.070276.107. Epub 2008 Mar 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验