Suppr超能文献

基于经验模态分解和支持向量机的脑电信号分类

[EEG signal classification based on EMD and SVM].

作者信息

Li Shufang, Zhou Weidong, Cai Dongmei, Liu Kai, Zhao Jianlin

机构信息

School of Information Science and Engineering, Shandong University, Jinan 250100, China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2011 Oct;28(5):891-4.

Abstract

The automatic detection and classification of EEG epileptic wave have great clinical significance. This paper proposes an empirical mode decomposition (EMD) and support vector machine (SVM) based classification method for non-stationary EEG. Firstly, EMD was used to decompose EEG into multiple empirical mode components. Secondly, effective features were extracted from the scales. Finally, the EEG was classified with SVM. The experiment indicated that this method could achieve good classification result with accuracy of 99 % for interictal and ictal EEGs.

摘要

脑电图癫痫波的自动检测与分类具有重要的临床意义。本文提出了一种基于经验模态分解(EMD)和支持向量机(SVM)的非平稳脑电图分类方法。首先,利用EMD将脑电图分解为多个经验模态分量。其次,从这些分量中提取有效特征。最后,用SVM对脑电图进行分类。实验表明,该方法能取得良好的分类结果,对发作间期和发作期脑电图的分类准确率可达99%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验