Suppr超能文献

快速磁微流混合器的数值分析。

Numerical analysis of a rapid magnetic microfluidic mixer.

机构信息

Department of Aeronautics and Astronautics, National Cheng-Kung University, Tainan, Taiwan.

出版信息

Electrophoresis. 2011 Nov;32(22):3268-76. doi: 10.1002/elps.201100254.

Abstract

This paper presents a detailed numerical investigation of the novel active microfluidic mixer proposed by Wen et al. (Electrophoresis 2009, 30, 4179-4186). This mixer uses an electromagnet driven by DC or AC power to induce transient interactive flows between a water-based ferrofluid and DI water. Experimental results clearly demonstrate the mixing mechanism. In the presence of the electromagnet's magnetic field, the magnetic nanoparticles create a body force vector that acts on the mixed fluid. Numerical simulations show that this magnetic body force causes the ferrofluid to expand significantly and uniformly toward miscible water. The magnetic force also produces many extremely fine finger structures along the direction of local magnetic field lines at the interface in both upstream and downstream regions of the microchannel when the external steady magnetic strength (DC power actuation) exceeds 30  Oe (critical magnetic Peclet number Pe(m),cr = 2870). This study is the first to analyze these pronounced finger patterns numerically, and the results are in good agreement with the experimental visualization of Wen et al. (Electrophoresis 2009, 30, 4179-4186). The large interfacial area that accompanies these fine finger structures and the dominant diffusion effects occurring around the circumferential regions of fingers significantly enhance the mixing performance. The mixing ratio can be as high as 95% within 2.0  s. at a distance of 3.0  mm from the mixing channel inlet when the applied peak magnetic field supplied by the DC power source exceeds 60  Oe. This study also presents a sample implementation of AC power actuation in a numerical simulation, an experimental benchmark, and a simulation of DC power actuation with the same peak magnetic strength. The simulated flow structures of the AC power actuation agree well with the experimental visualization, and are similar to those produced by DC power. The AC and DC power actuated flow fields exhibited no significant differences. This numerical study suggests approaches to maximize the performance of the proposed rapid magnetic microfluidic mixer, and confirms its exciting potential for use in lab-on-a-chip systems.

摘要

本文对 Wen 等人提出的新型主动微混合器进行了详细的数值研究。该混合器使用直流电或交流电驱动的电磁体诱导水基铁磁流体和去离子水之间的瞬态相互作用流。实验结果清楚地表明了混合机制。在电磁体磁场的作用下,磁性纳米粒子产生一个作用于混合流体的体力向量。数值模拟表明,这种磁力使铁磁流体显著且均匀地向可混相水扩展。当外部稳定磁场强度(直流电激励)超过 30 奥斯特(临界磁佩克莱数 Pe(m),cr = 2870)时,磁力还会在微通道的上下游区域,沿着局部磁场线方向在界面处产生许多非常细小的指状结构。本研究首次对这些明显的指状图案进行了数值分析,结果与 Wen 等人的实验可视化结果非常吻合。这些细小指状结构伴随的大界面面积和手指周围区域发生的主导扩散效应显著提高了混合性能。在距离混合通道入口 3.0 毫米处,当由直流电源提供的施加峰值磁场超过 60 奥斯特时,在 2.0 秒内可以达到 95%的混合比。本研究还在数值模拟中展示了交流电激励的实例实现、实验基准和相同峰值磁场的直流电激励模拟。交流电激励的模拟流场与实验可视化结果吻合良好,与直流电激励产生的流场相似。交流电和直流电激励的流场没有明显差异。这项数值研究提出了一些方法来最大化所提出的快速磁微混合器的性能,并证实了其在片上实验室系统中的应用潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验