School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma 73019, USA.
Hum Brain Mapp. 2013 Apr;34(4):775-95. doi: 10.1002/hbm.21473. Epub 2011 Nov 18.
Electroencephalography (EEG) and magnetoencephalography (MEG) have different sensitivities to differently configured brain activations, making them complimentary in providing independent information for better detection and inverse reconstruction of brain sources. In the present study, we developed an integrative approach, which integrates a novel sparse electromagnetic source imaging method, i.e., variation-based cortical current density (VB-SCCD), together with the combined use of EEG and MEG data in reconstructing complex brain activity. To perform simultaneous analysis of multimodal data, we proposed to normalize EEG and MEG signals according to their individual noise levels to create unit-free measures. Our Monte Carlo simulations demonstrated that this integrative approach is capable of reconstructing complex cortical brain activations (up to 10 simultaneously activated and randomly located sources). Results from experimental data showed that complex brain activations evoked in a face recognition task were successfully reconstructed using the integrative approach, which were consistent with other research findings and validated by independent data from functional magnetic resonance imaging using the same stimulus protocol. Reconstructed cortical brain activations from both simulations and experimental data provided precise source localizations as well as accurate spatial extents of localized sources. In comparison with studies using EEG or MEG alone, the performance of cortical source reconstructions using combined EEG and MEG was significantly improved. We demonstrated that this new sparse ESI methodology with integrated analysis of EEG and MEG data could accurately probe spatiotemporal processes of complex human brain activations. This is promising for noninvasively studying large-scale brain networks of high clinical and scientific significance.
脑电图(EEG)和脑磁图(MEG)对不同配置的脑活动具有不同的敏感性,因此它们在提供独立信息以更好地检测和反演脑源方面是互补的。在本研究中,我们开发了一种综合方法,该方法将一种新的稀疏电磁源成像方法,即基于变分的皮质电流密度(VB-SCCD),与 EEG 和 MEG 数据的联合使用相结合,用于重建复杂的脑活动。为了对多模态数据进行同步分析,我们建议根据各自的噪声水平对 EEG 和 MEG 信号进行归一化,以创建无单位的测量值。我们的蒙特卡罗模拟表明,这种综合方法能够重建复杂的皮质脑活动(最多同时激活和随机定位的 10 个源)。来自实验数据的结果表明,使用综合方法成功重建了人脸识别任务中引起的复杂脑活动,这些结果与其他研究结果一致,并通过使用相同刺激方案的功能磁共振成像的独立数据得到验证。来自模拟和实验数据的重建皮质脑活动提供了精确的源定位以及局部源的准确空间范围。与单独使用 EEG 或 MEG 的研究相比,使用 EEG 和 MEG 联合进行皮质源重建的性能得到了显著提高。我们证明了这种新的稀疏 ESI 方法与 EEG 和 MEG 数据的综合分析可以准确地探测复杂人类脑活动的时空过程。这对于非侵入性地研究具有重要临床和科学意义的大规模大脑网络具有很大的应用前景。