Suppr超能文献

稀疏电磁源成像中的 EEG 和 MEG 源重建的同时进行。

Simultaneous EEG and MEG source reconstruction in sparse electromagnetic source imaging.

机构信息

School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma 73019, USA.

出版信息

Hum Brain Mapp. 2013 Apr;34(4):775-95. doi: 10.1002/hbm.21473. Epub 2011 Nov 18.

Abstract

Electroencephalography (EEG) and magnetoencephalography (MEG) have different sensitivities to differently configured brain activations, making them complimentary in providing independent information for better detection and inverse reconstruction of brain sources. In the present study, we developed an integrative approach, which integrates a novel sparse electromagnetic source imaging method, i.e., variation-based cortical current density (VB-SCCD), together with the combined use of EEG and MEG data in reconstructing complex brain activity. To perform simultaneous analysis of multimodal data, we proposed to normalize EEG and MEG signals according to their individual noise levels to create unit-free measures. Our Monte Carlo simulations demonstrated that this integrative approach is capable of reconstructing complex cortical brain activations (up to 10 simultaneously activated and randomly located sources). Results from experimental data showed that complex brain activations evoked in a face recognition task were successfully reconstructed using the integrative approach, which were consistent with other research findings and validated by independent data from functional magnetic resonance imaging using the same stimulus protocol. Reconstructed cortical brain activations from both simulations and experimental data provided precise source localizations as well as accurate spatial extents of localized sources. In comparison with studies using EEG or MEG alone, the performance of cortical source reconstructions using combined EEG and MEG was significantly improved. We demonstrated that this new sparse ESI methodology with integrated analysis of EEG and MEG data could accurately probe spatiotemporal processes of complex human brain activations. This is promising for noninvasively studying large-scale brain networks of high clinical and scientific significance.

摘要

脑电图(EEG)和脑磁图(MEG)对不同配置的脑活动具有不同的敏感性,因此它们在提供独立信息以更好地检测和反演脑源方面是互补的。在本研究中,我们开发了一种综合方法,该方法将一种新的稀疏电磁源成像方法,即基于变分的皮质电流密度(VB-SCCD),与 EEG 和 MEG 数据的联合使用相结合,用于重建复杂的脑活动。为了对多模态数据进行同步分析,我们建议根据各自的噪声水平对 EEG 和 MEG 信号进行归一化,以创建无单位的测量值。我们的蒙特卡罗模拟表明,这种综合方法能够重建复杂的皮质脑活动(最多同时激活和随机定位的 10 个源)。来自实验数据的结果表明,使用综合方法成功重建了人脸识别任务中引起的复杂脑活动,这些结果与其他研究结果一致,并通过使用相同刺激方案的功能磁共振成像的独立数据得到验证。来自模拟和实验数据的重建皮质脑活动提供了精确的源定位以及局部源的准确空间范围。与单独使用 EEG 或 MEG 的研究相比,使用 EEG 和 MEG 联合进行皮质源重建的性能得到了显著提高。我们证明了这种新的稀疏 ESI 方法与 EEG 和 MEG 数据的综合分析可以准确地探测复杂人类脑活动的时空过程。这对于非侵入性地研究具有重要临床和科学意义的大规模大脑网络具有很大的应用前景。

相似文献

1
Simultaneous EEG and MEG source reconstruction in sparse electromagnetic source imaging.
Hum Brain Mapp. 2013 Apr;34(4):775-95. doi: 10.1002/hbm.21473. Epub 2011 Nov 18.
2
Sparse electromagnetic source imaging using EEG and MEG.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:6224-7. doi: 10.1109/EMBC.2012.6347416.
3
Investigation of EEG and MEG source imaging accuracy in reconstructing extended cortical sources.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:7013-6. doi: 10.1109/IEMBS.2011.6091773.
4
L1-norm and L2-norm neuroimaging methods in reconstructing extended cortical sources from EEG.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:1922-5. doi: 10.1109/IEMBS.2009.5333925.
6
A new wavelet transform to sparsely represent cortical current densities for EEG/MEG inverse problems.
Comput Methods Programs Biomed. 2013 Aug;111(2):376-88. doi: 10.1016/j.cmpb.2013.04.015. Epub 2013 May 21.
7
Monte Carlo simulation studies of EEG and MEG localization accuracy.
Hum Brain Mapp. 2002 May;16(1):47-62. doi: 10.1002/hbm.10024.
8
EEG/MEG source imaging using fMRI informed time-variant constraints.
Hum Brain Mapp. 2018 Apr;39(4):1700-1711. doi: 10.1002/hbm.23945. Epub 2018 Jan 2.

引用本文的文献

1
A novel, robust, and portable platform for magnetoencephalography using optically-pumped magnetometers.
Imaging Neurosci (Camb). 2024 Sep 25;2:1-22. doi: 10.1162/imag_a_00283. eCollection 2024 Sep 1.
2
Multi-Modal Electrophysiological Source Imaging With Attention Neural Networks Based on Deep Fusion of EEG and MEG.
IEEE Trans Neural Syst Rehabil Eng. 2024;32:2492-2502. doi: 10.1109/TNSRE.2024.3424669. Epub 2024 Jul 11.
3
A Novel, Robust, and Portable Platform for Magnetoencephalography using Optically Pumped Magnetometers.
bioRxiv. 2024 Mar 11:2024.03.06.583313. doi: 10.1101/2024.03.06.583313.
4
Automated extraction of heart rate variability from magnetoencephalography signals.
Heliyon. 2024 Feb 23;10(5):e26664. doi: 10.1016/j.heliyon.2024.e26664. eCollection 2024 Mar 15.
6
The temporal dynamics of Large-Scale brain network changes in disorders of consciousness: A Microstate-Based study.
CNS Neurosci Ther. 2023 Jan;29(1):296-305. doi: 10.1111/cns.14003. Epub 2022 Nov 1.
7
Neuromodulation Management of Chronic Neuropathic Pain in The Central Nervous system.
Adv Funct Mater. 2020 Sep 10;30(37). doi: 10.1002/adfm.201908999. Epub 2020 Jun 10.
9
Neuronal Correlates of Product Feature Attractiveness.
Front Behav Neurosci. 2018 Jul 17;12:147. doi: 10.3389/fnbeh.2018.00147. eCollection 2018.
10
Cortical Statistical Correlation Tomography of EEG Resting State Networks.
Front Neurosci. 2018 May 30;12:365. doi: 10.3389/fnins.2018.00365. eCollection 2018.

本文引用的文献

2
Variation-based sparse cortical current density imaging in estimating cortical sources with MEG data.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:5145-8. doi: 10.1109/IEMBS.2010.5626178.
4
Comparing MEG and fMRI views to naming actions and objects.
Hum Brain Mapp. 2009 Jun;30(6):1845-56. doi: 10.1002/hbm.20785.
5
Reconstructing cortical current density by exploring sparseness in the transform domain.
Phys Med Biol. 2009 May 7;54(9):2683-97. doi: 10.1088/0031-9155/54/9/006. Epub 2009 Apr 8.
6
Quantification of the benefit from integrating MEG and EEG data in minimum l2-norm estimation.
Neuroimage. 2008 Sep 1;42(3):1069-77. doi: 10.1016/j.neuroimage.2008.05.064. Epub 2008 Jun 14.
7
Multiple sparse priors for the M/EEG inverse problem.
Neuroimage. 2008 Feb 1;39(3):1104-20. doi: 10.1016/j.neuroimage.2007.09.048. Epub 2007 Oct 10.
8
Sparse source imaging in electroencephalography with accurate field modeling.
Hum Brain Mapp. 2008 Sep;29(9):1053-67. doi: 10.1002/hbm.20448.
9
A novel integrated MEG and EEG analysis method for dipolar sources.
Neuroimage. 2007 Sep 1;37(3):731-48. doi: 10.1016/j.neuroimage.2007.06.002. Epub 2007 Jun 14.
10
The advantage of combining MEG and EEG: comparison to fMRI in focally stimulated visual cortex.
Neuroimage. 2007 Jul 15;36(4):1225-35. doi: 10.1016/j.neuroimage.2007.03.066. Epub 2007 Apr 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验